Критерии согласия. Сложная гипотеза

Критерии Колмогорова и ω^2 для сложной гипотезы. Задача проверки простой гипотезы о виде закона распределе-ния случайной величины X на практике встречается довольно редко. Гораздо чаще бывает необходимо проверить по слу- чайной выборке \vec{X}_n из генеральной совокупности X сложную гипотезу о принадлежности функции распределения F(t) слу-чайной величины X заданному параметрическому множеству распределений $\{F(t;\theta),\theta\in\Theta\},\Theta\subset\mathbb{R}^d$:

$$H_0: F(t) = F_0(t;\theta), \theta \in \Theta.$$

Кажется естественным сначала каким-то образом постро-ить оценку $\hat{\theta}(\vec{X}_n)$ параметра θ , а затем применить критерии Колмогорова и ω^2 для проверки гипотезы

$$H_0$$
: $F(t) = F_0(t; \widehat{\theta}(\vec{x}_n)),$

где $\hat{\theta}(\vec{x}_n)$ — значение оценки $\hat{\theta}(\vec{X}_n)$ по данным выборки \vec{x}_n -К сожалению, при таком подходе эти критерии уже не будут

непараметрическими — при гипотезе H_0 распределение модифицированных статистик $\widehat{D}(\vec{X}_n)$ и $\widehat{\omega}^2(\vec{X}_n)$, где

$$\begin{split} \widehat{D}(\vec{x}_n) &= \sup_{t} |F_n(t) - F_0(t; \widehat{\theta}(\vec{x}_n))|, \\ \widehat{\omega}^2(\vec{x}_n) &= \frac{1}{12n^2} + \frac{1}{n} \sum_{i=1}^n (F_0(x_{(i)}; \widehat{\theta}(\vec{x}_n)) - \frac{2i-1}{2n})^2, \end{split}$$

вообще говоря, зависит от F_0 и от метода нахождения оценки $\hat{\theta}(\vec{X}_n)$, что требует составления большого количества таблиц распределений.

Однако если $\widehat{\theta}(\vec{X}_n)$ — оценки максимального правдоподобия параметра θ , а элементы $F(t;\theta)$ параметрического множества $\{F(t;\theta),\,\theta\in\Theta\}$ функций распределений получаются при помощи преобразования сдвига и масштаба какого-нибудь одного своего представителя $F(t;\theta_0)$, т.е.

$$F(t;\theta)=F(\frac{t-a}{b},\theta_0),$$

то для критериев Колмогорова и ω^2 достаточно иметь только одну таблицу для каждого семейства. К таким семействам относятся все важные типы распределений, и, в частности, нормальное. Более того, при небольшой модификации статистик $\widehat{D}(\vec{X}_n)$ и $\widehat{\omega}^2(\vec{X}_n)$ их распределение при $n\geqslant 5$ практически перестает зависеть* от n.

Критерий χ^2 для сложной гипотезы. Пусть функция распределения дискретной случайной величины X, принимающей конечное множество значений u_1, \ldots, u_r , зависит от d-мерного вектора параметров θ . Тогда вероятность p_k то- Γ 0, что X примет возможное значение u_k , зависит от θ , т.е. $p_k = p_k$ (

 θ), k=1, r. А так как вероятности p_1 (θ), ..., p_r (θ) полно-стью определяют функцию распределения случайной величины

X, то в рассматриваемом случае *основная гипотеза* принимает следующий вид:

$$H_0$$
: $PrX = u_k = p_k(\theta)$, $k = 1, r$, $\theta \in \Theta \subset \mathbb{R}^d$.

Эту сложную гипотезу можно проверить при помощи модификации критерия χ^2 Пирсона.

Пусть $\hat{\theta}(\vec{x}_n)$ — значение оценки $\hat{\theta}(\vec{X}_n)$ максимального правдоподобия для θ , а $n_k(\vec{x}_n)$ — количество элементов выборки \vec{x}_n , равных u_k , k=1,r. Оценку $\hat{\theta}(\vec{X}_n)$ получают в результате минимизации логарифма функции правдоподобия

$$L(\vec{X}_n;\theta) = \frac{n!}{n_1! \dots n_r!} \prod_{k=1}^r p_i^{n_k(\vec{X}_n)}(\theta), \quad \sum_{i=1}^r n_i(\vec{X}_n) = n,$$

как (см. (3.2)) решение системы уравнений

$$\sum_{k=1}^{r} \frac{n_k(\vec{X}_n)}{p_k(\theta)} \frac{\partial p_k(\theta)}{\partial \theta_j} = 0, \quad j = \overline{1, d}.$$

Пример 5.4. Пусть X и Y — непрерывные случайные величины с функциями распределения F(t) и G(t) соответственно. Даны выборка \vec{x}_{10} с элементами

$$-0,15; 8,60; 5,00; 3,71; 4,29; 7,74; 2,48; 3,25; -1,15; 8,38$$
 и выборка \vec{y}_{10} с элементами

$$2,55; \ 12,07; \ 0,46; \ 0,35; \ 2,69; \ -0,94; \ 1,73; \ 0,73; \ -0,35; \ -0,37.$$

Проверим на уровне значимости $\alpha = 0.05$ гипотезу (5.10) против альтернативной гипотезы (5.11).

Выписываем значения объединенного вариационного ряда заданных выборок

и последовательность чисел δ_i , i=1,20,

Вычислив по формуле (5.16) значения величин $s_j,\ j=1,20,$ и подставив их в (5.17), определим, что $D(\vec{x}_{10},\vec{y}_{10})=6.$ В таблице квантилей распределения статистики* $D(\vec{X}_m,\vec{Y}_n)$ квантили $D_{1-\alpha}=D_{0,95}$ нет, но есть квантиль $D_{0,9476}=6.$ Поэтому гипотезу (5.10) следует отклонить в пользу альтернативной гипотезы (5.11) на уровне значимости $\alpha=0,0524.$

Критерии независимости

Критерий Спирмена. Пусть имеется случайная выборка $(X_1, Y_1), \ldots, (X_n, Y_n)$ из генеральной совокупности двумерной непрерывной случайной величины (X, Y) с функцией распределения $F(t,\tau)$, а $F_X(t)$ и $F_Y(\tau)$ — функции распределения случайных величин X и Y соответственно. Если случайные величины X и Y имеют нормальные распределения, то для проверки статистической гипотезы об их независимости

$$H_0$$
: $F(t,\tau) = F_X(t) F_Y(\tau)$ (5.18)

можно использовать процедуру, связанную с вычислениями выборочного коэффициента корреляции (см. формулу (6.12)).

Если же о распределениях непрерывных случайных величин X и Y ничего не известно, то для проверки основной гипотезы (5.18) при альтернативной гипотезе

$$H_1$$
: $F(t, au)
eq F_X(t) F_Y(au)$ для некоторых $(t, au) \in \mathbb{R}^2$

используют ранговый критерий Спирмена, основанный на следующем понятии.

Определение 5.1. Рангом $R_i(\vec{z}_N)$ элемента z_i числовой последовательности $\vec{z}_N = (z_1, \ldots, z_N)$ называют его порядковый номер в вариационном ряду $z_{(1)}, \ldots, z_{(N)}$.

Согласно определению, $R_i(\vec{z}_N)$ — это число элементов последовательности z_1, \ldots, z_N , не больших чем z_i , которое можно записать следующим образом:

$$R_i(\vec{z}_N) = 1 + \sum_{k=1} \eta(z_i - z_k),$$

где $\eta(t)$ — функция Хевисайда. Ранг любого элемента последовательности \vec{z}_N — это натуральное число в диапазоне от 1 до N, причем ранг наименьшего элемента последовательности равен 1, а ранг наибольшего — N.

Пример 5.5. Рассмотрим выборку $\vec{z}_4 = (3,8,4,7,-2,6,17,3)$. Ее вариационный ряд имеет вид -2,6;3,8;4,7;17,3. Поэтому $R_1(\vec{z}_4) = 2,\ R_2(\vec{z}_4) = 3,\ R_3(\vec{z}_4) = 1,\ R_4(\vec{z}_4) = 4$. #

Определение 5.2. Рангом элемента Z_i случайной выборки $\vec{Z}_N = (Z_1, \ldots, Z_N)$ называют случайную величину $R_i(\vec{Z}_N)$, реализация которой $R_i(\vec{z}_N)$ есть ранг реализации z_i случайной величины Z_i в вариационном ряду $z_{(1)}, \ldots, z_{(N)}$.

Обозначим через $R_i = R_i(\vec{X}_n)$ — ранг элемента X_i случайной выборки X_1, \ldots, X_n , а через $S_i = S_i(\vec{Y}_n)$ — ранг элемента Y_i случайной выборки Y_1, \ldots, Y_n .

Ранговым коэффициентом корреляции Спирмена назовем случайную величину

$$\rho(\vec{X}_n, \vec{Y}_n) = \frac{\sum_{i=1}^{n} (R_i - \overline{R})(S_i - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \overline{R})^2 \sum_{i=1}^{n} (S_i - \overline{S})^2}},$$
 (5.19)

где

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i, \quad \overline{S} = \frac{1}{n} \sum_{i=1}^{n} S_i.$$

Статистика (5.19) является выборочным коэффициентом корреляции последовательностей рангов R_1, \ldots, R_n и S_1, \ldots, S_n . Согласно определению рангов $R_i, S_i, i = \overline{1, n}$,

$$\overline{R} = \overline{S} = \frac{1}{n} \sum_{i=1}^{n} i = \frac{n+1}{2},$$

и можно показать, что $x_1 < x_2 < \ldots < x_n.$

В этом случае реализация r_i ранга R_i равна $i,i=\overline{1,n},$ и значение $\rho(\vec{x}_n,\vec{y}_n)$ статистики $\rho(\vec{X}_n,\vec{Y}_n)$ можно вычислить по формуле

Без ограничения общности можно считать, что значения пар наблюдений $(x_i, y_i), i = 1, n$, занумерованы в порядке 5829 растания их первых злементов, т.е. так, что выполняются неравенства

$$\rho(\vec{X}_n, \vec{Y}_n) = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^n (R_i - S_i)^2.$$

$$\rho(\vec{x}_n, \vec{y}_n) = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^n (i - s_i)^2,$$

где s_i — реализация ранга S_i , i=1,n.

Можно показать, что при истинности основной гипотезы (5.18)

$$\mathbf{M}\rho(\vec{X}_n, \vec{Y}_n) = 0, \qquad \mathbf{D}\rho(\vec{X}_n, \vec{Y}_n) = \frac{1}{n-1},$$
 (5.22)

и, следовательно, при этом выборочные значения статистики $ho(\vec{X}_n,\vec{Y}_n)$ невелики и группируются около нуля. Поэтому (и это кажется достаточно естественным) ранговый критерий Спирмена отклоняет H_0 на уровне значимости α , если

$$|\rho(\vec{x}_n, \vec{y}_n)| > \rho_{1-\alpha/2},$$

где $\rho_{1-\alpha/2}$ — квантиль уровня $1-\alpha/2$ распределения случайной величины $\rho(\vec{X}_n, \vec{Y}_n)$ при истинности основной гипотезы (5.18). При небольших n это распределение табулировано*. Известно, что при $n \to \infty$ и при истинности основной гипотезы (5.18)

$$\lim_{n\to\infty} \mathbf{P}\left\{\frac{\rho(\vec{X}_n, \vec{Y}_n) - \mathbf{M}\rho(\vec{X}_n, \vec{Y}_n)}{\sqrt{\mathbf{D}\rho(\vec{X}_n, \vec{Y}_n)}} < t\right\} = \Phi_0(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-\frac{u^2}{2}} du,$$

т.е. квантили случайной величины $ho(\vec{X}_n, \vec{Y}_n)$ можно приближенно вычислять при помощи таблиц квантилей стандартного нормального распределения.

Пример 5.6. В табл. 5.1 представлены n=10 значений $(x_i, y_i), i=\overline{1,10}$, непрерывной двумерной случайной величины (X,Y). Проверим на уровне значимости $\alpha=0,05$ гипотезу H_0 о независимости случайных величин X и Y.

Таблица 5.1

$$x_i$$
 -1,63 1,11 1,15 -1,93 0,38 -1,08 -0,31 0,60 0,12 0,92 y_i 0,54 0,88 -1,21 0,89 -0,64 -0,21 0,08 -0,74 0,79 0,14

Строим последовательность рангов (табл. 5.2). По формуле (5.20) вычисляем реализацию статистики $ho(\vec{X}_n, \vec{Y}_n)$

$$\rho(\vec{x}_n, \vec{y}_n) = 1 - \frac{6}{10(10^2 - 1)} \Big((2 - 7)^2 + (9 - 9^2) + (10 - 1)^2 + (1 - 10)^2 + (6 - 3)^2 + (3 - 4)^2 + (4 - 5)^2 + (7 - 2)^2 + (5 - 8)^2 + (8 - 6)^2 \Big) =$$

$$= 1 - \frac{6}{990} \Big(25 + 0 + 81 + 81 + 9 + 1 + 1 + 25 + 9 + 2 \Big) \approx -0.4118.$$

Таблица 5.2

r_i	2	9	10	1	6	3	4	7	5	8
s_i	7	9	1	10	3	4	5	2	8	6

По таблицам распределения статистики $ho(\vec{X}_n, \vec{Y}_n)$ рангового критерия Спирмена* находим квантили

$$\rho_{0,952} = 0,6726, \quad \rho_{0,97} = 0,7374, \quad \rho_{0,983} = 0,80223, \quad (5.23)$$

а квантили $\rho_{1-\alpha/2}=\rho_{0,975}$ нет, так как $\rho(\vec{X}_n,\vec{Y}_n)$ — дискретная случайная величина. Тем не менее, из значений квантилей (5.23) заключаем, что $|\rho(\vec{x}_n,\vec{y}_n)|<\rho_{0,952}$ и H_0 не отклоняется даже на большем уровне значимости.

Таблицы сопряженности признаков и критерий χ^2 . Пусть имеется случайная выборка

$$(\vec{X}_n, \vec{Y}_n) = ((X_1, Y_1), \dots, (X_n, Y_n))$$

из генеральной совокупности двумерной дискретной случайной величины (X,Y), где случайная величина X может принимать значения u_1,\ldots,u_r , а случайная величина Y — значения v_1,\ldots,v_s . Определим случайную величину $n_{ij}(\vec{X}_n,\vec{Y}_n)$, реализация n_{ij} которой равна количеству элементов выборки $(\vec{x}_n,\vec{y}_n)=((x_1,y_1),\ldots,(x_n,y_n))$, совпадающих с элементом (u_i,v_j) , i=1,r,j=1,s.

Введем случайные величины $n_{i\cdot}(\vec{X}_n, \vec{Y}_n)$ и $n_{\cdot j}(\vec{X}_n, \vec{Y}_n)$, значения $n_{i\cdot}$ и $n_{\cdot j}$ которых определим по формулам

$$n_{i\cdot} = \sum_{j=1}^{n} n_{ij}, \quad n_{\cdot j} = \sum_{i=1}^{n} n_{ij}.$$

При этом n_i . — количество элементов выборки (\vec{x}_n, \vec{y}_n) , в которых встретилось значение u_i , а $n_{\cdot j}$ — количество элементов выборки (\vec{x}_n, \vec{y}_n) , в которых встретилось значение v_j . Кроме того, имеют место очевидные равенства

$$\sum_{i=1}^{r} n_{i} = \sum_{j=1}^{s} n_{j} = \sum_{i=1}^{r} \sum_{j=1}^{s} n_{ij} = n.$$

В рассматриваемом случае результаты наблюдений удобно оформлять в виде таблицы, называемой *таблицей сопряженности признаков* (табл. 5.3).

Таблица 5.3

Х	Y							
	v_1	v_2	•••	v_s				
u_1	n_{11}	n_{12}	•••	n_{1b}	n_1 .			
u_2	n_{21}	n ₂₂	•••	n_{2s}	n_2 .			
•••	•••	• • • •						
u_r	n_{r1}	n_{r2}		n_{rs}	n_r .			
	n. ₁	n2		n.,	n			

Пусть далее

$$p_{ij} = \mathbf{P} \{ X = u_i, Y = v_j \}, \quad p_{i\cdot} = \mathbf{P} \{ X = u_i \}, \quad p_{\cdot j} = \mathbf{P} \{ Y = v_j \},$$

 $i = \overline{1, r}, \quad j = \overline{1, s}.$

Дискретные случайные величины X и Y независимы тогда и только тогда, когда

$$\mathbf{P}\left\{X=u_i,\,Y=v_j\right\}=\mathbf{P}\left\{X=u_i\right\}\mathbf{P}\left\{Y=v_j\right\},\quad i=\overline{1,\,r},\ j=\overline{1,\,s}.$$

Поэтому основную гипотезу о независимости дискретных случайных величин X и Y можно представить в следующем виде:

$$H_0: p_{ij} = p_i \cdot p_{\cdot j}, i = 1, r, j = 1, s.$$
 (5.24)

При этом, как правило, в качестве альтернативной используют гипотезу

$$H_1$$
: $p_{ij} \neq p_i p_j$ для некоторых $i = \overline{1, r}, j = \overline{1, s}$. (5.25)

Для проверки основной гипотезы (5.24) при альтернативной гипотезе (5.25) К. Пирсон предложил использовать статистику $\hat{\chi}^2(\vec{X}_n, \vec{Y}_n)$, называемую статистикой Фишера — Пирсона, реализация $\hat{\chi}^2(\vec{x}_n, \vec{y}_n)$ которой определяется формулой

$$\widehat{\chi}^{2}(\vec{x}_{n}, \vec{y}_{n}) = n \sum_{i=1}^{r} \sum_{i=1}^{s} \frac{\left(n_{ij} - \frac{n_{i} \cdot n_{\cdot j}}{n}\right)^{2}}{n_{i} \cdot n_{\cdot j}}.$$
 (5.26)

Из закона больших чисел следует, что при $n o \infty$

$$\frac{n_{ij}(\vec{X}_n, \vec{Y}_n)}{n} \to p_{ij}, \quad \frac{n_{i\cdot}(\vec{X}_n, \vec{Y}_n)}{n} \to p_{i\cdot}, \quad \frac{n_{\cdot j}(\vec{X}_n, \vec{Y}_n)}{n} \to p_{\cdot j},$$

$$i = \overline{1, r}, \quad j = \overline{1, s}.$$

Поэтому при истинности гипотезы H_0 и больших объемах выборки $(\vec{x_n}, \vec{y_n})$ должно выполняться приближенное равенство

$$n_{ij} \approx n_i \cdot n_{ij}, \quad i = \overline{1, r}, \ j = \overline{1, s},$$

и, следовательно, значения (5.26) статистики $\widehat{\chi}^2(\vec{X}_n, \vec{Y}_n)$ должны быть "не слишком велики". "Слишком большие" значения должны свидетельствовать о том, что H_0 неверна.

Ответ на вопрос о том, какие значения нужно считать слишком большими, а какие — нет, дает следующая теорема.

Теорема 5.3. Если истинна гипотеза H_0 , то распределение статистики $\widehat{\chi}^2(\vec{X}_n, \vec{Y}_n)$ при $n \to \infty$ слабо сходится к случайной

величине, имеющей χ^2 -распределение с числом степеней свободы k=(r-1)(s-1):

$$\lim_{n \to \infty} \mathbf{P} \{ \widehat{\chi}^2(\vec{X}_n, \vec{Y}_n) < z \} = \int_0^z \frac{t^{\frac{k}{2} - 1}}{2^{\frac{k}{2}} \Gamma(\frac{k}{2})} e^{-\frac{t}{2}} dt, \quad z > 0. \quad \#$$

В соответствии с теоремой 5.3 **критерий независимости** χ^2 отклоняет гипотезу H_0 на уровне значимости $1-\alpha$, если

$$\widehat{\chi}^{2}(\vec{x}_{n}, \vec{y}_{n}) > \chi^{2}_{1-\alpha}((r-1)(s-1)),$$

где $\chi^2_{1-\alpha}((r-1)(s-1))$ — квантиль уровня значимости $1-\alpha$ χ^2 -распределения с числом степеней свободы (r-1)(s-1). При этом считается*, что критерий χ^2 можно использовать, если $n_i.n_{.j}/n\geqslant 5$.

Правую часть равенства (5.26) можно преобразовать к форме, более удобной для практического использования:

$$\widehat{\chi}^{2}(\vec{x}_{n}, \vec{y}_{n}) = n \left(\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{n_{ij}^{2}}{n_{i} \cdot n_{\cdot j}} - 1 \right).$$
 (5.27)

В частном, но очень распространенном случае таблиц сопряженности при r=s=2 формула (5.26) для вычисления $\widehat{\chi}^2(\vec{x}_n,\vec{y}_n)$ имеет еще более простой вид:

$$\widehat{\chi}^2(\vec{x}_n, \vec{y}_n) = \frac{n(n_{11}n_{22} - n_{12}n_{21})^2}{n_1 \cdot n_2 \cdot n_{-1} \cdot n_{-2}}.$$
 (5.28)

Заметим, что для таблиц сопряженности при r=s=2, как правило, используют статистику $\tilde{\chi}^2(\vec{X}_n,\vec{Y}_n)$ с реализациями

$$\widetilde{\chi}^2(\vec{x}_n, \vec{y}_n) = \frac{\left(n|n_{11}n_{22} - n_{12}n_{21}| - n/2\right)^2}{n_1 \cdot n_2 \cdot n_{11} \cdot n_{22}},\tag{5.29}$$

называемую *статистикой Фишера* — *Пирсона с по- правкой Йейтса на непрерывность*, распределение которой лучше согласуется с χ^2 -распределением.

Пример 5.7. В табл. 5.4 приведены результаты 145 наблюдений двумерного дискретного случайного вектора (X,Y). Проверим на уровне $\alpha=0.05$ гипотезу H_0 о независимости случайных величин X и Y.

В рассматриваемом случае r = 3, s = 3, т.е. случайные величины

Таблица 5.4

v	Y						
X	3	4	5				
0	45	25	15	85			
1	11	11	13	35			
2	9	9	7	25			
	65	45	35	145			

X и Y принимают по три различных значения. Вычислим по формуле (5.27) значение $\hat{\chi}^2(\vec{x}_n, \vec{y}_n)$ величины $\hat{\chi}^2(\vec{X}_n, \vec{Y}_n)$:

$$\hat{\chi}^{2}(\vec{x}_{n}, \vec{y}_{n}) = 145 \left(\frac{45^{2}}{65 \cdot 85} + \frac{25^{2}}{45 \cdot 85} + \frac{15^{2}}{35 \cdot 85} + \frac{11^{2}}{65 \cdot 35} + \frac{11^{2}}{45 \cdot 35} + \frac{13^{2}}{35 \cdot 35} + \frac{9^{2}}{65 \cdot 25} + \frac{9^{2}}{45 \cdot 25} + \frac{7^{2}}{35 \cdot 25} - 1 \right) =$$

$$= 145 \left(0,3665 + 0,1634 + 0,0756 + 0,0532 + \frac{1}{2} + \frac{1}{2$$

По таблице квантилей χ^2 -распределения (см. табл. П.3) с числом степеней свободы (r-1)(s-1)=4 находим

$$\chi^2_{1-\alpha}((r-1)(s-1)) = \chi^2_{0.95}(4) = 9.49.$$

Таким образом, оснований для отклонения гипотезы H_0 о независимости случайных величин X и Y недостаточно.