

Национальный исследовательский ядерный университет «МИФИ»

Институт ядерной физики и технологий Лаборатория экспериментальной ядерной физики

А.И. Болоздыня

Введение в ядерную физику

Лекция №4

Взаимодействие ядерных излучений с веществом

Лекция №4

Взаимодействие ядерных излучений с веществом

- 1. Введение
- 2. Взаимодействие тяжёлых заряженных частиц с веществом
- з. Взаимодействие электронов с веществом
- 4. Взаимодействие гамма-квантов с веществом
- 5. Нейтроны и их взаимодействие с веществом
- 6. Использование эффектов взаимодействия ядерных излучений с веществом

1. Введение

Взаимодействие *ядерных излучений с веществом* зависит от свойств частиц и характера их взаимодействий с веществом.

Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами Кулоновским полем.

Нейтроны и гамма-кванты, сталкиваясь с частицами вещества, передают им свою энергию, вызывая ионизацию в результате образования вторичных заряженных частиц.

В случае *у-квантов* основными процессами, приводящими к образованию заряженных частиц являются фотоэффект, эффект Комптона и рождение электрон-позитронных пар.

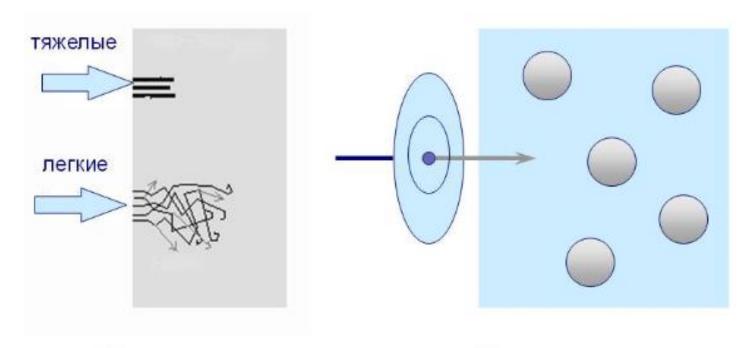
Среди различных типов взаимодействия *нейтронов* с веществом наиболее характерны упругое и неупругое рассеяние и ядерные реакции. Основные потери энергии нейтрона при движении в веществе вызваны столкновениями с ядрами. При этом на одно столкновение приходится примерно 100 ионизаций

Взаимодействие частиц с веществом зависит от таких характеристик вещества как его плотность, атомный номер и средний ионизационный потенциал.

Рождение частицы

Упругое рассеяние

Неупругое рассеяние


Heavy charged particles (characteristic distance $\approx 10^{-5}$ m)

Fast electrons (characteristic distance $\approx 10^{-3} \text{ m}$)

Uncharged Radiations

Neutrons (characteristic length $\approx 10^{-1} \text{ m}$)

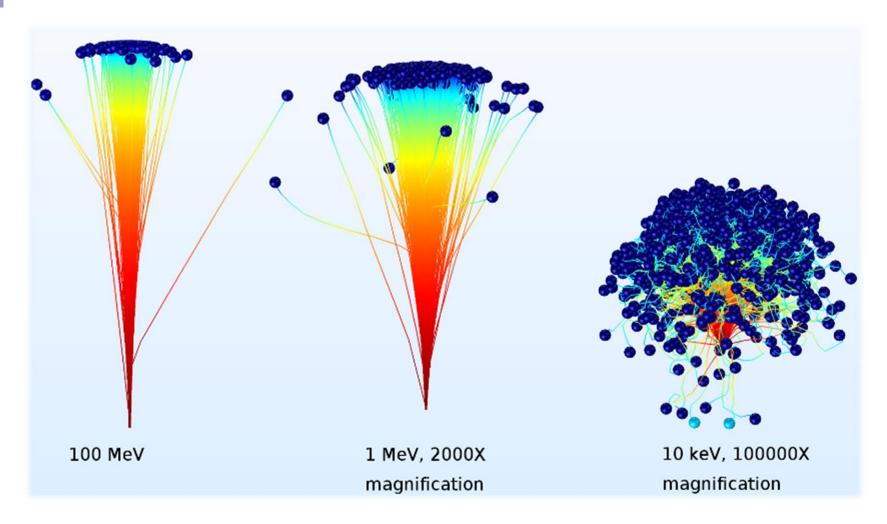
X-rays and gamma rays (characteristic length $\approx 10^{-1}$ m)

Макроскопически

Микроскопически

2. Взаимодействие тяжёлых заряженных частиц с веществом

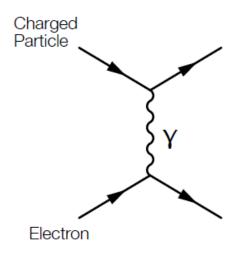
Тяжёлые заряженные частицы взаимодействуют главным образом с электронами атомов.

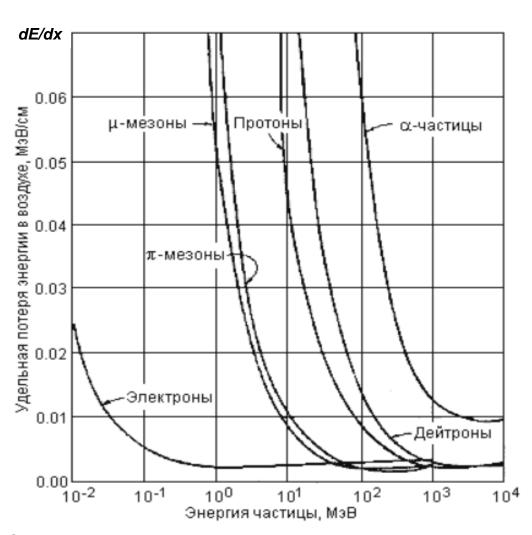

Из законов сохранения можно получить, что при столкновении с электроном массой *m* тяжёлая частица массой *M* теряет кинетическую энергию

$$\Delta T = T (4m/M),$$

что, например, для 5-МэВной альфа-частицы составляет 2,7 кэВ

https://www.youtube.com/watch?v=noP7HT-Uins

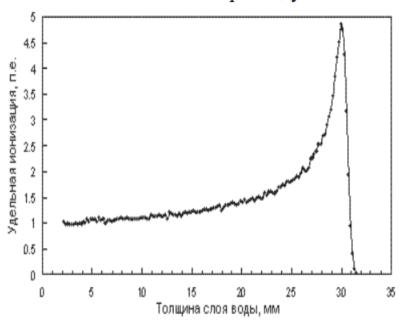

Чем больше начальная кинетическая энергия тяжёлых заряженных частиц (ионов), тем большую роль в их взаимодействии с твердыми материалами играет потеря энергии на ионизацию и тем меньшую — стохастические взаимодействия с ядрами. В результате ионы с высокой энергией движутся практически по прямой, а ионы с низкой энергией — более хаотично.


Удельные потери энергии заряженной частицей

Тормозная способность вещества может быть охарактеризована величиной удельных потерь энергии

dE/dx,

где *dE* – энергия, теряемая частицей в слое вещества толщиной *dx*.

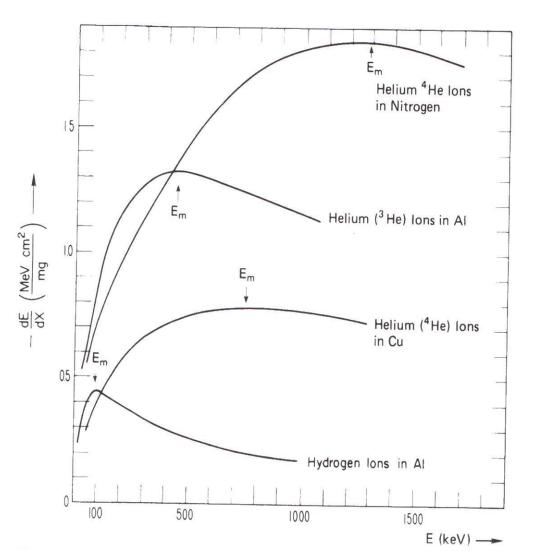

Зависимость удельной потери энергии в воздухе от энергии частицы для нескольких типов частиц

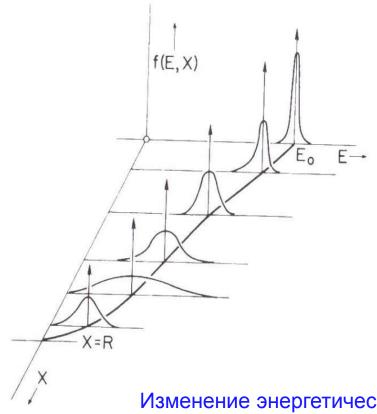
Удельные потери энергии возрастают с уменьшением энергии частицы и особенно резко перед остановкой частицы в веществе (пик Брэгга).

В 1930 году Ганс Бете вывел формулу для расчёта удельных потерь энергии тяжёлой заряженной частицей в веществе (формула Бете-Блоха):

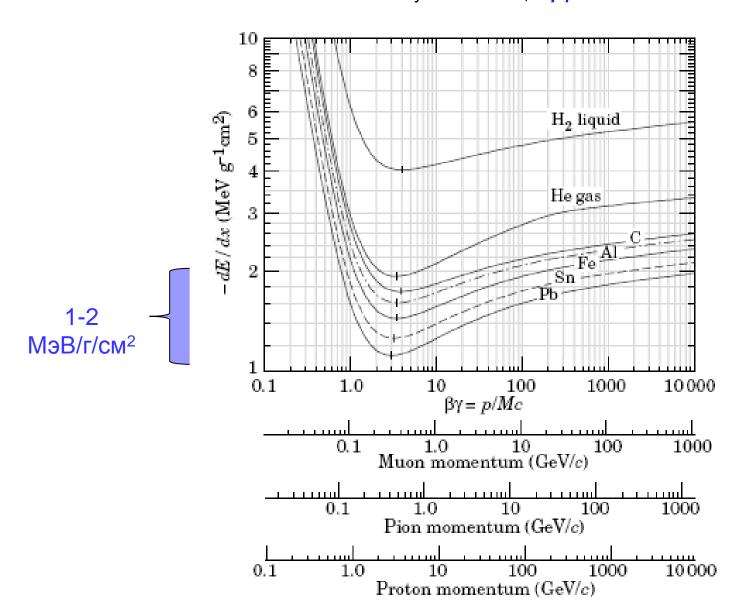
Пик Брэгга при прохождении протонов с энергией 62 МэВ через воду

$$\frac{dE}{dx} = \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{4\pi z^2 N_0 Z\rho}{mc^2 \beta^2 A} \left[\ln\left(\frac{2mc^2 \beta^2}{I}\right) - \ln(1-\beta^2) - \beta^2 \right]$$

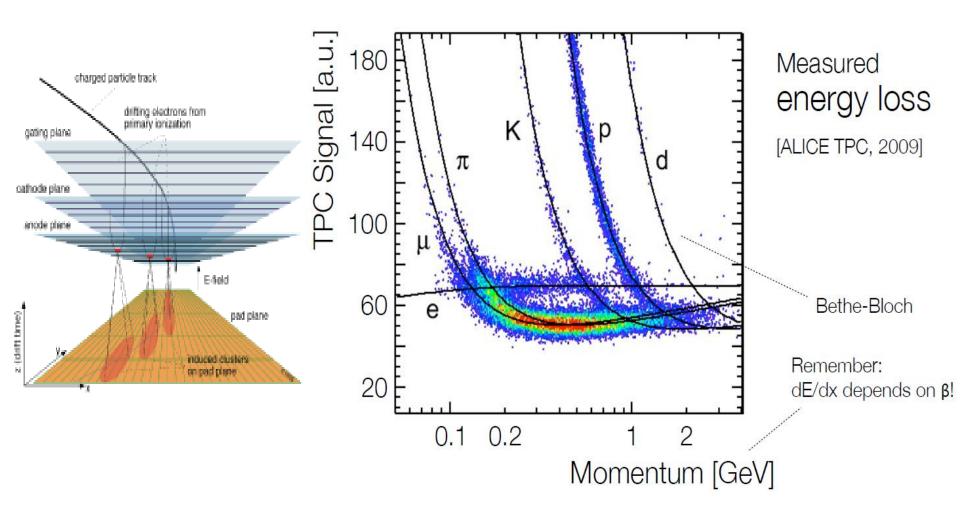

где
$$v = \beta c$$


ze – электрический заряд частицы

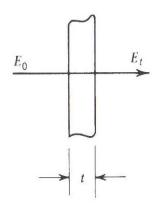
Z, A, ρ - атомный номер, атомный вес, плотность среды

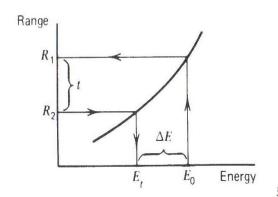

 N_0 – число Авогадро , m – масса электрона

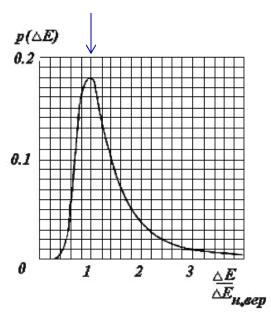
Удельные потери энергии ионами водорода и гелия в различных средах



Изменение энергетического распределения частиц в пучке по мере прохождения слоя вещества толщиной *X*

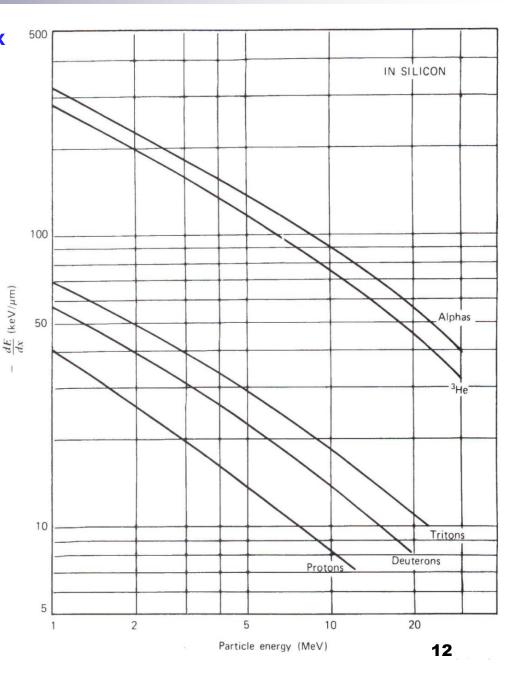




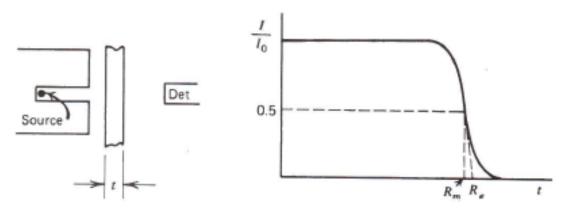


Потери энергии в тонких поглотителях

$$\Delta E = -\left(\frac{dE}{dx}\right)_{\text{avg}} t$$



Флуктуации ионизационных потерь в тонких слоях — распределение Ландау

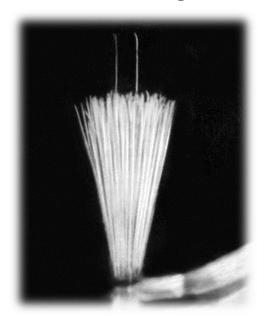

$$\Delta E_{cp} = 1.4 \Delta E_{\text{\tiny Bep}}$$

M

Пробег заряженной частицы

$$R = \int_{E}^{0} \frac{dE}{dE/dx}$$

Зависимость изменения интенсивности / первоначально моноэнергетичных альфа-частиц от пути x, пройденного ими в веществе.


Точный расчёт даёт при E << (Mc)²/m_e (E и M - кинетическая энергия и масса частицы)

$$\left(\frac{dE}{dx}\right)_{\text{mores}} = -\frac{4\pi Z^2}{\beta^2} n_e r_0^2 m_e c^2 \left[\ln \left(\frac{2m_e c^2 \beta^2}{\overline{I}}\right) - \ln(1-\beta^2) - \beta^2 \right]$$

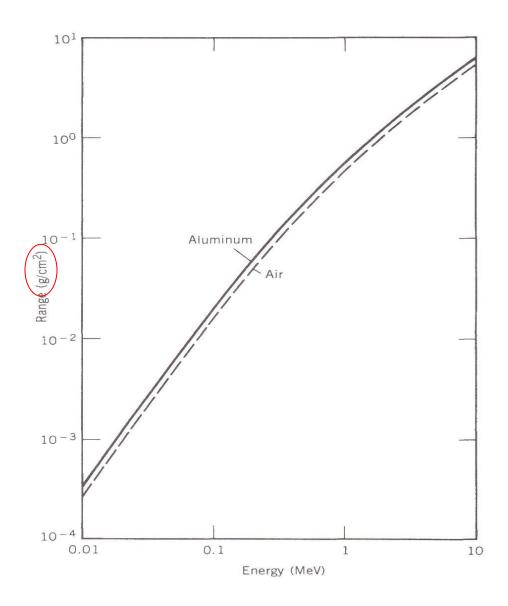
$$-\frac{\mathrm{d}E}{\mathrm{d}x} = 3.1 \cdot 10^5 \cdot \frac{Z \cdot z^2 \rho}{A\beta^2} \left(11.2 + \ln \frac{\beta^2}{Z(1-\beta^2)} - \beta^2\right) \frac{\mathrm{gB}}{\mathrm{cm}}$$

$$I = 13.5Z'$$
 эB, где Z' $r0 = e2/mec2 = 2.818 \cdot 10$ -13 см классический радиус электрона

Пробег альфа-частиц в различных веществах в зависимости от энергии E_{α}

Вещество	Еа, МэВ						
	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Воздух, см	2.5	3.5	4.6	5.9	7.4	8.9	10.6
А1, мкм	16	23	30	38	48	58	69
Биологическая ткань, мкм	31	43	56	72	91	110	130

Пробег протонов в алюминии в зависимости от их энергии Ер


Ер, МэВ	1	3	5	10
Пробег, см	1.3·10 ⁻³	7.8·10 ⁻³	1.8·10 ⁻²	6.2·10 ⁻²
Пробег, мг/см²	3.45	21	50	170
Е _р , МэВ	20	40	100	1000
Пробег, см	2.7·10 ⁻¹	7.0·10 ⁻¹	3.6	148
Пробег, мг/см2	560	1.9·10 ³	9.8·10 ³	4·10 ⁵

Полуэмпирическая формула (правило Брэгга-Климана) для оценки пробега частицы в веществе, если известен её пробег в другом веществе

$$\frac{R_1}{R_0} \cong \frac{\rho_0 \sqrt{A_1}}{\rho_1 \sqrt{A_0}}$$

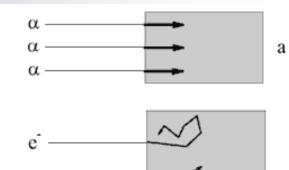
R is the range,ρ the densityA the atomic weight

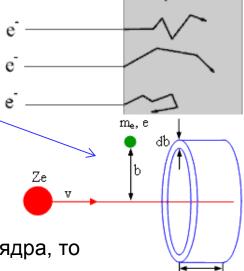
Многократное рассеяние

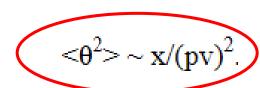
Заряженная частица, движущаяся в веществе, испытывает большое число столкновений, приводящих к изменению направления её движения. Этот процесс называется многократным кулоновским рассеянием.

Угол рассеяния в единичном акте рассеяния

$$tg \theta \approx \frac{\Delta p}{p} = \frac{2Zze^2}{pv} \frac{1}{b}$$


Отсюда для среднего квадрата угла многократного рассеяния на пути х в веществе с плотностью ядер п


$$<\theta^{2}> = \frac{8\pi Z^{2}z^{2}e^{4}nx}{(pv)^{2}} \ln \frac{b_{MAKC}}{b_{MUH}}$$

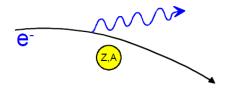

Если выбрать для оценки в качестве $b_{\text{макс}}$ и $b_{\text{мин}}$ размеры атома и ядра, то

$$\langle \theta^2 \rangle = 0.157 \frac{Z(Z+1)}{A} \frac{z^2 x}{(pv)^2} \ln \left[1.13 \cdot 10^4 \frac{Z^{4/3}}{A} \frac{z^2 x}{\beta^2} \right]$$

где A – атомная масса вещества в а.е.м., pv – в МэВ, x – в см

16

Для тяжёлой нерелятивистской заряженной частицы p = mv и, ввиду большой величины её массы m и малости пробега x, средний угол рассеяния невелик и траектория практически прямолинейна



Прохождение электронов через вещество отличается от прохождения тяжёлых заряженных частиц. Главная причина - малая масса электрона.

Относительно большое изменение импульса электрона при каждом столкновении с частицами среды вызывает заметное изменение направления движения электрона (придаёт ускорение!) возникает электромагнитное («тормозное») излучение.

Мощность излучения W заряда, испытывающего ускорение а

$$W = \frac{2}{3} \frac{e^2 a^2}{c^3}$$

Ускорение частицы с зарядом ze и массой m, пролетающей на расстоянии b от атомного ядра с зарядом Ze, можно оценить как

$$a \approx \frac{1}{m} \frac{Zze^2}{b^2}$$

Удельные потери энергии электронов являются суммой ионизационных и радиационных потерь

$$\frac{dE}{dx} = \left(\frac{dE}{dx}\right)_{c} + \left(\frac{dE}{dx}\right)_{r}$$

Формула Бете для энергетических потерь электронов с кинетической энергией Т:

Ионизационные потери

$$\left(\frac{dE}{dx}\right)_{c} = \left(\frac{e^{2}}{4\pi\epsilon_{0}}\right)^{2} \frac{2\pi N_{0} Z\rho}{mc^{2}\beta^{2}A} \left[\ln\frac{T(T+mc^{2})^{2}\beta^{2}}{2I^{2}mc^{2}} + (1-\beta^{2}) - \left(2\sqrt{1-\beta^{2}} - 1 + \beta^{2}\right) \ln 2 + \frac{1}{8}\left(1 - \sqrt{1-\beta^{2}}\right)^{2} \right]$$

Радиационные потери

$$\left(\frac{dE}{dx}\right)_{\rm r} = \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{Z^2 N_0 (T + mc^2)\rho}{137m^2 c^4 A} \left[4\ln\frac{2(T + mc^2)}{mc^2} - \frac{4}{3}\right]$$

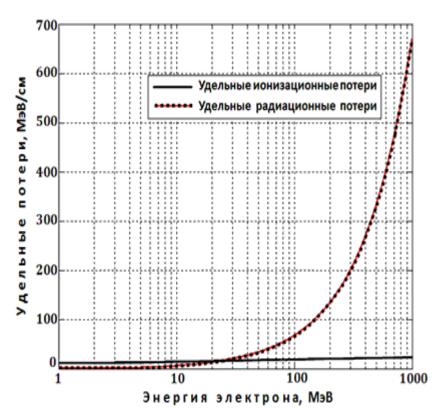
Радиационные потери для электронов пренебрежимо малы при T < 1 МэВ;

при T > 100 МэВ радиационные потери в железе и свинце превышают ионизационные потери, соответственно, в 3 и 10 раз

Критическая энергия

Критическая энергия – это энергия, при которой $(dE/dx)_{pa∂} \approx (dE/dx)_{uohus}$.

$$E_{\text{крит}} = 610/(Z + 1.24)$$
 (твердые тела) $E_{\text{крит}} = 710/(Z + 0.92)$ (газы)

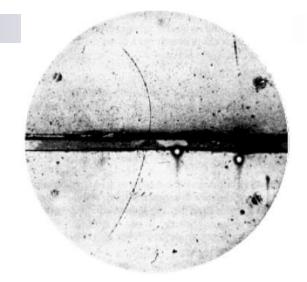

Если
$$(dE/dx)_{pa\partial} >> (dE/dx)_{uohu3}$$
 где L_r - радиационная длина

To
$$E = E_0 \exp(-x/L_r)$$

 $|dE/dx|_{pa\partial} \approx E/L_r$

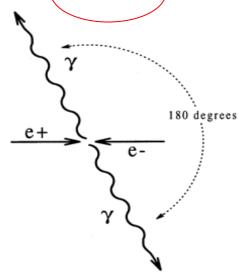
Критические энергии электронов $\mathsf{E}_{\mathsf{крит}}$ и радиационные длины L_{r} для различных веществ

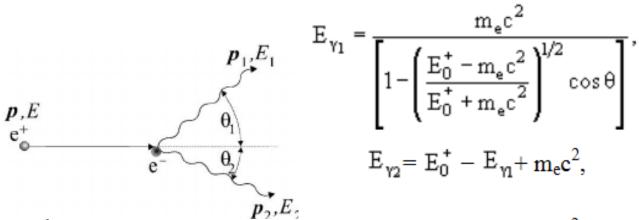
Вещество	Критическая энергия	Радиационная длина L _r		
	Е _{крит} , МэВ	г/см2	СМ	
Н (жидкость)	278.02	63.04	890.4	
Воздух	87.92	36.62	3.04·10 ⁴	
Ar (жидкость)	32.84	19.55	14.00	
С (графит)	81.74	42.70	19.32	
Al	42.7	24.01	8.897	
Fe	21.68	13.84	1.757	
Cu	19.42	12.86	1.436	
Pb	7.43	6.37	0.5612	



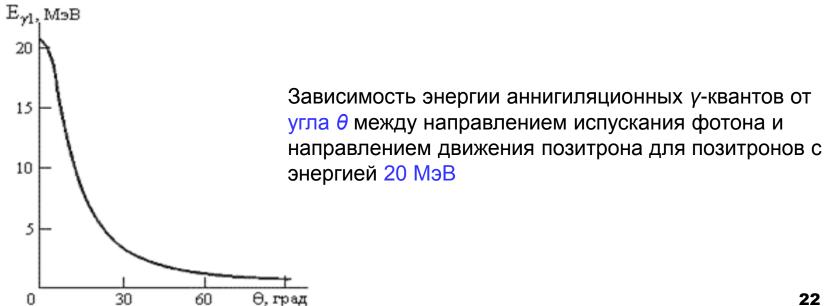
Удельные ионизационные и радиационные потери энергии электронов в меди в зависимости от энергии

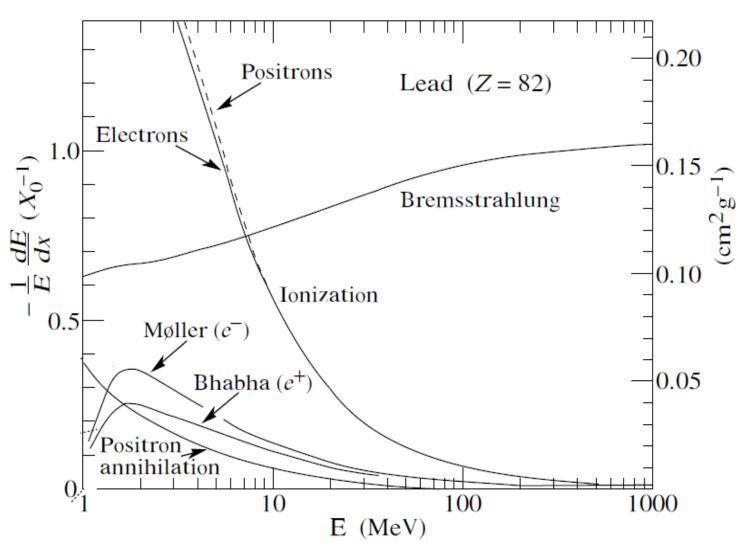
Взаимодействие позитронов с веществом


Позитро́н — античастица электрона -- открыт К.Д.Андерсоном в 1932 г. (Н.п. 1936г.), имеет электрический заряд +1, спин 1/2, лептонный заряд −1 и массу, равную массе электрона (0,5109989 МэВ/с²).

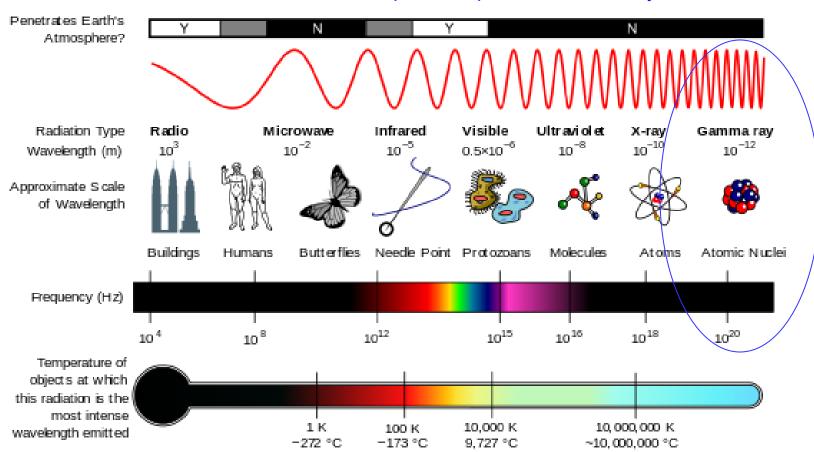

Наблюдение позитрона в камере Вильсона Карлом Андерсоном

Взаимодействие позитронов в веществе описывается теми же соотношениями, что и для электронов. Необходимо также дополнительно учесть эффекты аннигиляции налетающего позитрона с электроном вещества и исключить из расчётов эффект обмена. Сечение аннигиляции обратно пропорционально скорости позитронов: $\sigma_{\text{анниг}} \sim 1/v$, поэтому позитроны аннигилируют,

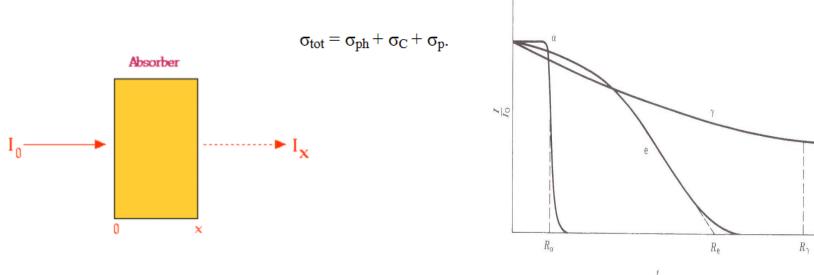

практически потеряв всю свою энергию.


При двухфотонной аннигиляции образуется два ү-кванта с энергиями

где E_0^+ — полная энергия позитрона (кинетическая + m_ec^2), а θ — угол между направлением испускания первого фотона и направлением движения позитрона.



4. Взаимодействие гамма-квантов с веществом


К гамма-излучению относят электромагнитные волны, длина которых значительно меньше межатомных расстояний, поэтому они обладают ярко выраженными корпускулярными свойствами. Содержание γ-квантов во Вселенной ~400 см⁻³

Место гамма-квантов в спектре электромагнитных излучений

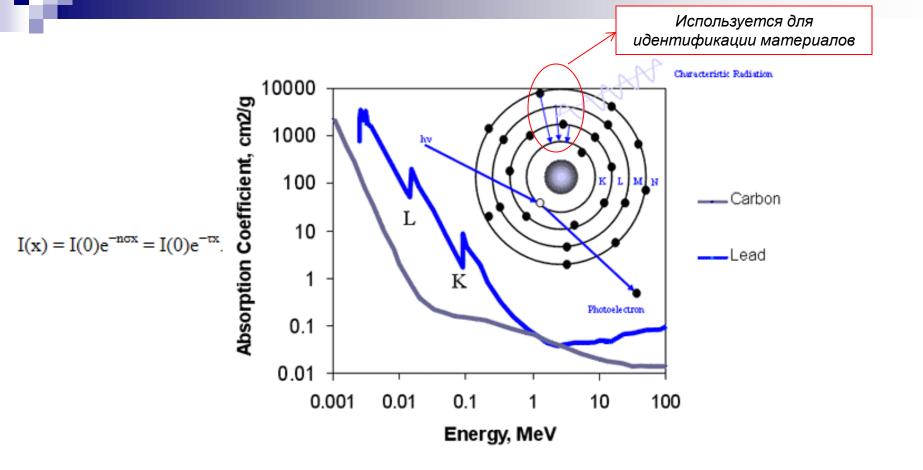
В области энергий гамма-квантов, излучаемых возбужденными ядрами при переходах в основное и низшие возбужденные состояния, т. е. при E_{γ} от 10 кэВ до примерно 10 МэВ наиболее существенны три процесса взаимодействия фотонов с веществом: комптоновское (некогерентное) рассеяние, фотоэффект и образование пар электрон-позитрон. Суммарное эффективное сечение в этой области энергий является суммой эффективных сечений отдельных процессов, участвующих в ослаблении первичного потока:

Уменьшение интенсивности I(x) моноэнергетичного коллимированного пучка гамма-квантов не слишком толстым слоем x однородного вещества происходит экспоненциально:

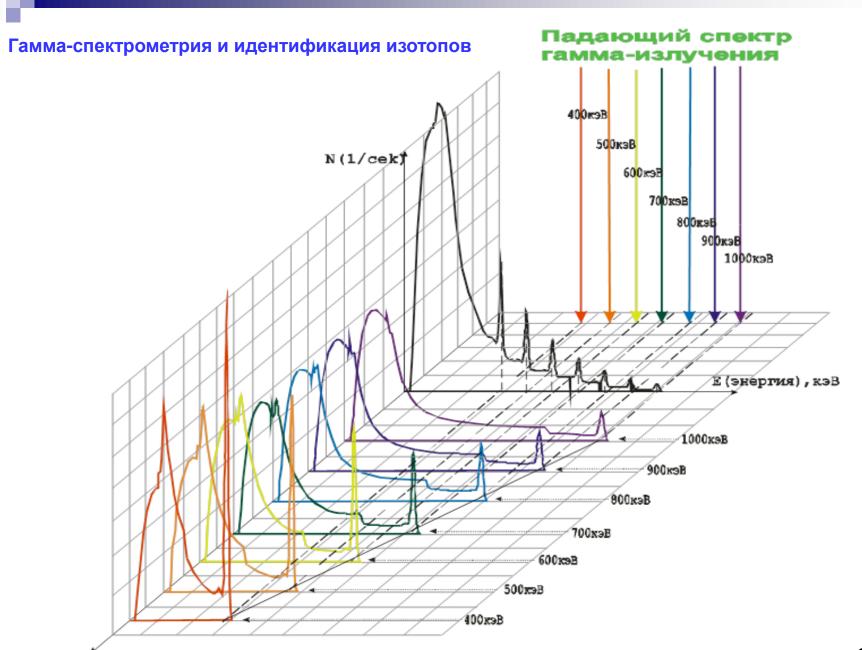
$$I(x) = I(0)e^{-n\sigma x} = I(0)e^{-\tau x}$$
.

где n - концентрация атомов поглотителя. Величину τ (она обычно выражается в см $^{-1}$)называют линейным коэффициентом поглощения.

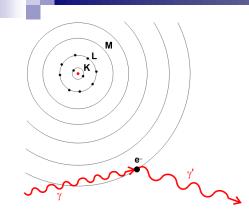
Φοποσφφεκπ Photon field Photon field Photon field Fietion of a K-shell electron Fietion of a K-shell electron


Нобелевская премия по физике 1921 года была присуждена А. Эйнштейну «за заслуги в теоретической физике и особенно за открытие закона фотоэлектрического эффекта» (дискретность света)

Если энергия γ -кванта больше энергии связи электрона оболочки атома, происходит фотоэффект. Это явление состоит в том, что фотон целиком поглощается атомом, а один из электронов атомной оболочки выбрасывается за пределы атома. Используя закон сохранения энергии, можно определить кинетическую энергию фотоэлектрона E_e :

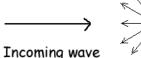

$$E_e = E_{\gamma} - I_i - E_n$$

где I_i — ионизационный потенциал оболочки атома, из которой выбивается электрон; E_n — энергия отдачи ядра, E_γ — энергия гамма-кванта. Величина энергии отдачи ядра обычно мала, поэтому ею можно пренебречь. Тогда энергия фотоэлектрона определится соотношением E_e = E_γ — I_i , где i = K, L, M,... — индекс электронной оболочки.

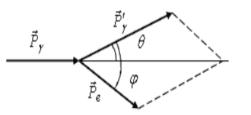


Вероятность фотооглащения в среде $\sim Z^{N}/E^{3.5}$

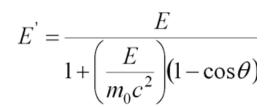
$$Z$$
 – заряд ядра (атомный номер) N = 4-5 E – энергия гамма-кванта



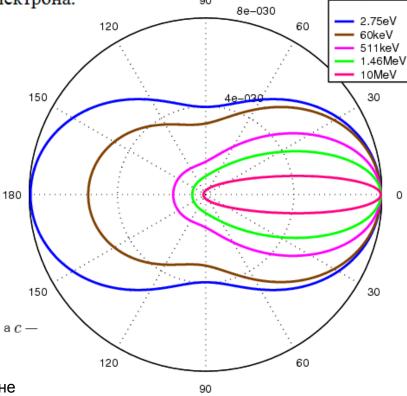
Е (энергия), кэВ


Эффект Комптона

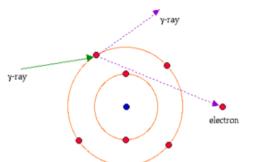
Комптон-эффект – это рассеяние у-квантов на свободных электронах. Электрон можно считать свободным, если энергия у-квантов во много раз превышает энергию связи электрона.



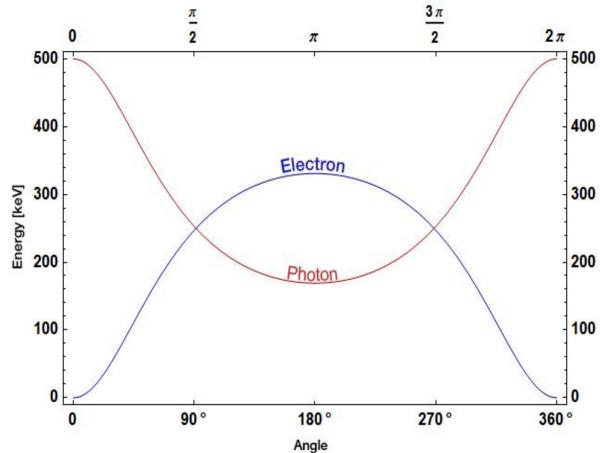
$$\vec{P}_{\gamma} = \vec{P}'_{\gamma} + \vec{P}_{e}$$
, $m_e c^2 + E_{\gamma} = E'_{\gamma} + E_{e}$

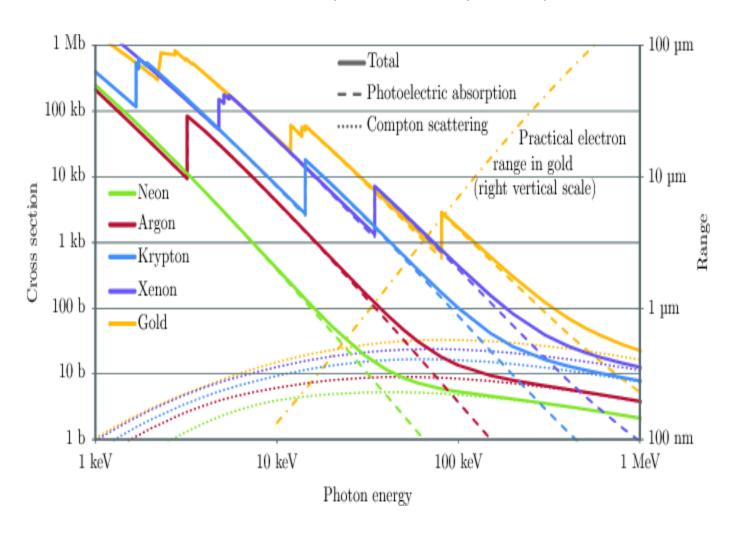


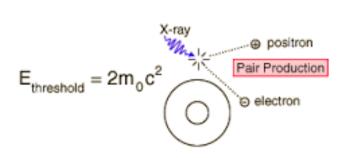
$$\Delta \lambda = 2\lambda_0 \sin^2(\theta/2), \lambda_0 = h/m_0 c, \lambda_0 = 2,426 \cdot 10^{-12} \text{ M}$$


где λ_0 — комптоновская длина волны электрона, heta — угол между направлением падающей и рассеянной волнами, h — постоянная Планка, m_0 — масса электрона, а c скорость света.

Полное сечение комптоновского рассеяния на свободном электроне (формула Клейна — Нишины , 1928)

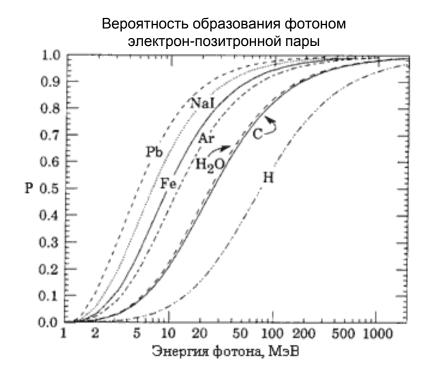

$$\sigma_k = \pi r_0^2 \frac{m_0 c^2}{\hbar \omega} \left(\ln \frac{2\hbar \omega}{m_0 c^2} + \frac{1}{2} \right)$$

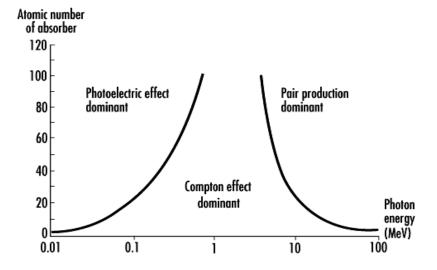

Синим показана угловая зависимость для томсоновского (рэлеевского) упругого рассеяния, т.е. для случая, когда энергия фотона мала по сравнению с массой электрона 29


Угловые зависимости энергий рассеянного фотона и электрона отдачи при Комптоновском рассеянии гамма-квантов с энергией 500 кэВ

Сравнение энергетический зависимостей сечений фотоэффекта и Комптоновского рассеяния для разных сред

Рождение электрон-позитронных пар

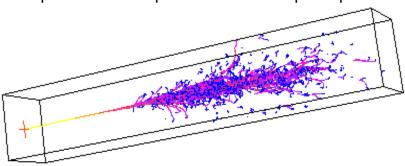



$$\gamma \rightarrow e^- + e^+$$

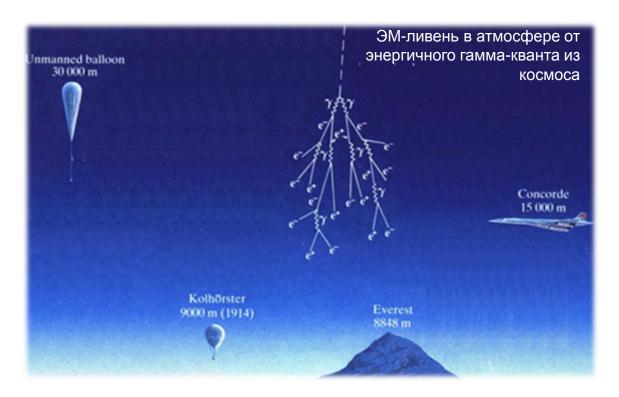
$$p_{\gamma} = p_{e-} + p_{e+} + p_R$$

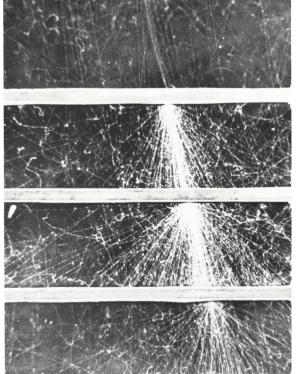
- Взаимодействие фотона с полем ядра
- Обратный процесс аннигиляция
- Порог реакции 1.022 МэВ = 2 m_в
- Сечение:

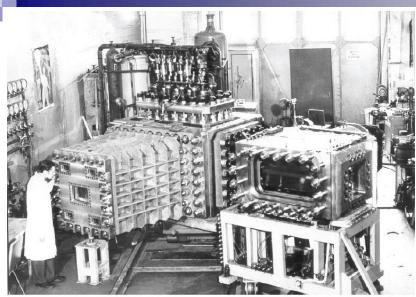
резко растёт после порога сильно зависит от ат номера ~Z²

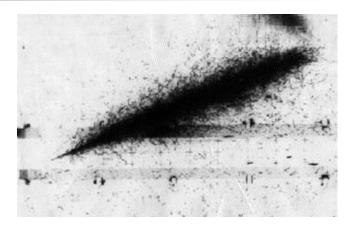


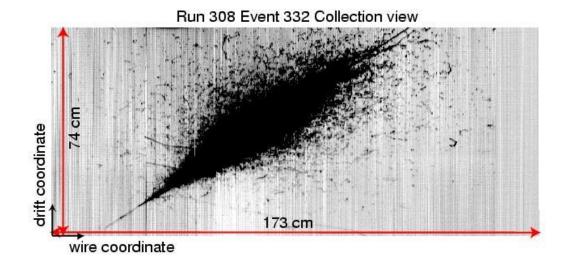
$$\sigma_{\rm p} = \frac{Z^2}{137} r_{\rm e}^2 \left(\frac{28}{9} \ln \left(\frac{2E_{\gamma}}{m_{\rm e} c^2} \right) - \frac{218}{27} \right)$$


сечение образования электрон- позитронной пары в области энергий фотонов $m_ec^2 << E_\gamma << m_ec^2 (137/Z_2)$

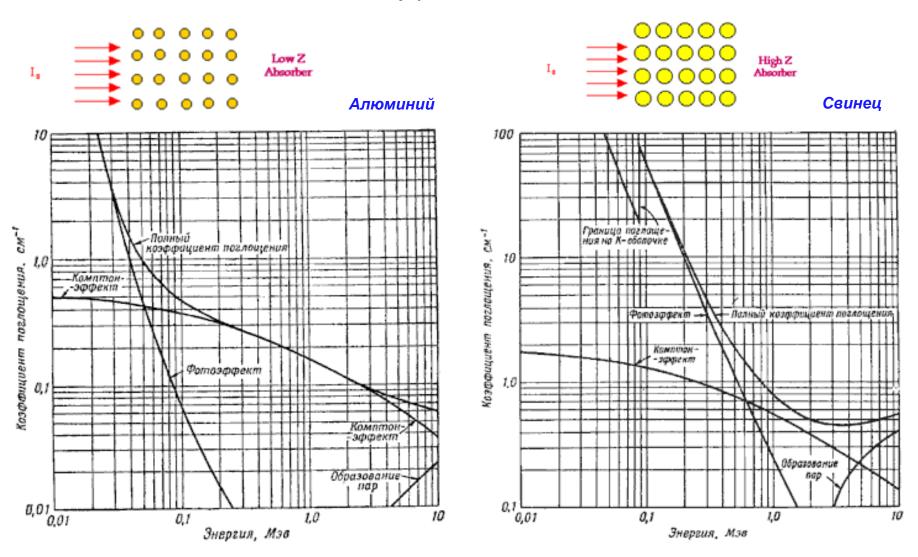



Монте-Карло симулирование электронного ливня в кристалле электромагнитного калориметра


ЭМ-ливень в камере Вильсона со свинцовыми пластинами



800-литровая жидкоксенонова камера ДИАНА (ИТЭФ)



Фотография электромагнитного ливня в 180-литровой ксеноновой камере ИТЭФа

Electromagnetic shower observed in the ICARUS LAr drift chamber during the technical run with cosmic rays at Pavia, summer 2001

$$I(d) = I_0 \cdot e^{-\mu d}.$$

5. Нейтроны и их взаимодействие с веществом

В 1920 году Э. Резерфорд предположил, что ядро атома состоит из протонов и нейтральных частиц *нейтронов*, сформированных каким-то образом из протонов и электронов

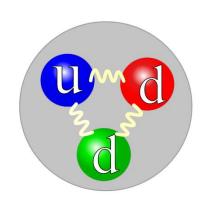
Proton

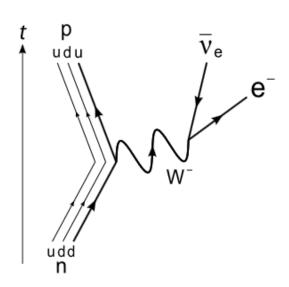
Neutron

В 1930 году В. Боте и Г. Беккер открыли высокопроникающее, но не ионизирующее излучение, возникающее при бомбардировка лёгких элементов альфа-частицами. В 1932 году М.Кюри и Ф.Жолио обнаружили, что это излучение выбивает энергичные протоны из парафина.

Вскоре после этого в том же 1932 г. Джеймс Чедвик (Sir James Chadwick) экспериментально доказал, что это излучение не гамма-кванты и предположил, что это нейтроны и определил их массу, сравнивая энергию и импульсы ядер отдачи водорода и азота, за что получил Нобелевскую премию по физике в 1935 году.

Дж.Чедвик (1891-1974)


Вскоре после этого открытия В. Гейзенбергом и другими была создана модель ядра, состоящего из протонов и нейтронов



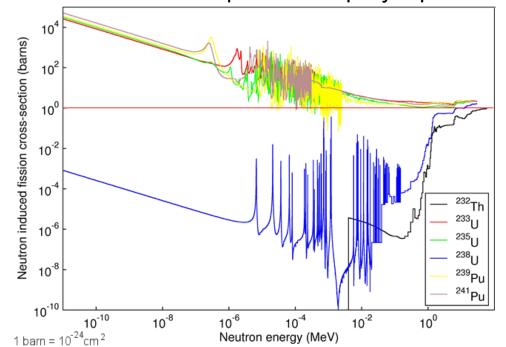
Свойства нейтрона:

- Macca 939,565 4133(58) МэВ = 1,674 927 471(21)·10⁻²⁷ кг = 1,008 664 915 88(49) а. е. м. = m_p + 1,29343 МэВ
- Заряд 0 . Экспериментальное значение (-0,2±0,8)·10⁻²¹е
- Спин ½
- Изотопический спин 1/2
- Барионное число 1
- Магнитный момент -1,913 042 73(45) ядерного магнетона Бора
- Внутренняя чётность +1
- Время жизни «на свободе» = 880.0 ± 0.9 с $T_{1/2}$ =611 с
- Схема распада

$$n^0 \rightarrow p^+ + e^- + \overline{v}_e$$

• С парциальной вероятностью 0,001 возможен распад

$$n^0 \rightarrow p^+ + e^- + \overline{v}_e + \gamma$$



Что происходит с пучком нейтронов при прохождении через вещество?

Поток уменьшается за счёт рассеяния на ядрах и ядерных реакций. Ядерные реакции ведут к поглощению нейтронов и генерации ионизирующих излучений. Упругое рассеяние ведёт к «замедлению» (потере энергии) нейтронов

$$dI = -I\sigma_{t}n\,dx \qquad \qquad I = I_{0}\,e^{-\sigma_{t}nx}$$

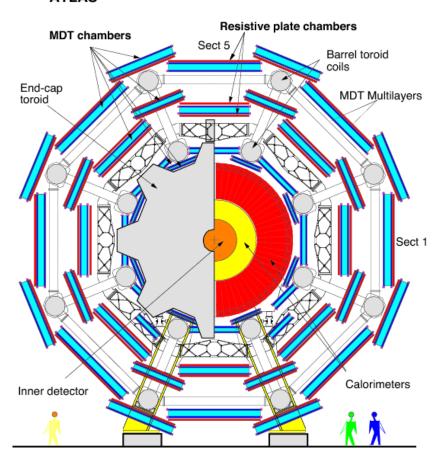
Сечение взаимодействия нейтронов с веществом сильно зависит от энергии нейтронов и нерегулярно меняется от ядра к ядру (при изменении А)

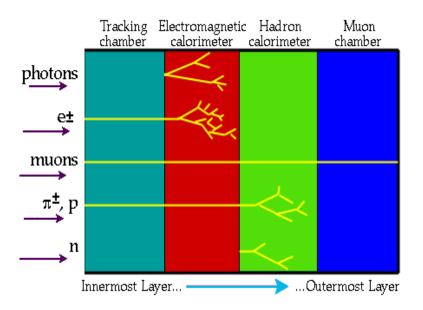
Классификация нейтронов по энергии

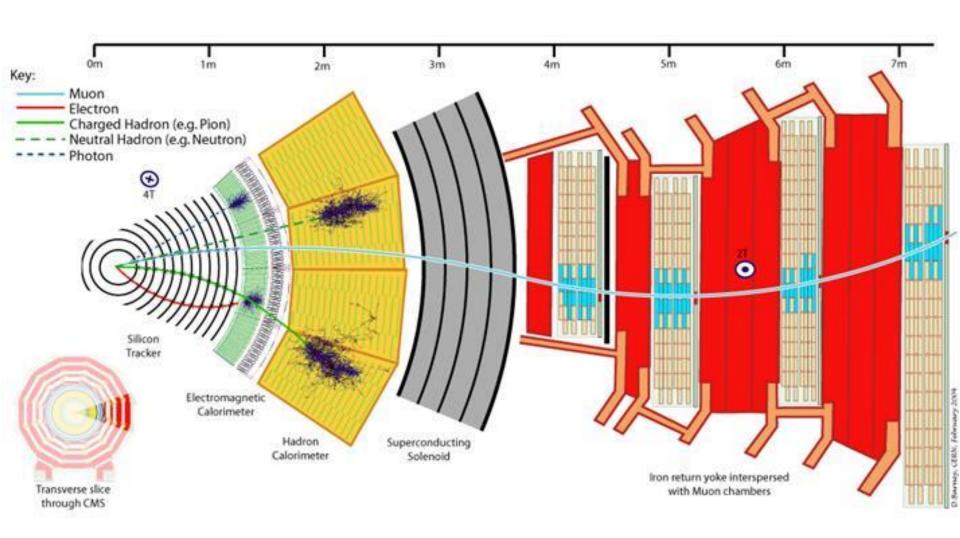
Thermal	$E \simeq 0.025 \text{ eV}$
Epithermal	$E \sim 1 \text{ eV}$
Slow	$E \sim 1 \text{ keV}$
Fast	E = 100 keV - 10 MeV

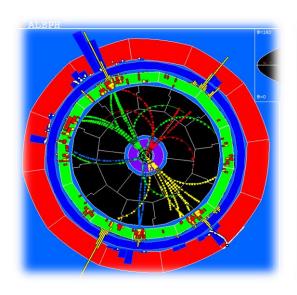
Тип реакции	Сечение реакции		
Радиационный захват (n, _γ)	Идёт на всех ядрах. Сечение: для тепловых нейтронов варьируется в широком интервале от 0,1 до 10^3 и даже 10^4 барн ($^{135}_{55}$ Xe) для быстрых нейтронов — от 0.1 до нескольких барн.		
Упругое рассеяние (n,n)	Сечение варьируется в интервале нескольких барн.		
Неупругое рассеяние (n,n')	Пороговая реакция. Сечение по порядку величины несколько барн.		
(n,p)	Наиболее важные реакции: $n + {}_{2}^{3}\text{He} \rightarrow {}_{1}^{3}\text{H} + p + 0.76 \text{ M}{}_{9}\text{B},$ $\sigma_{\text{тепл.нейтр}} = 5400 \text{ барн},$ $n + {}_{5}^{10}\text{B} \rightarrow {}_{6}^{14}\text{C} + p + 0.63 \text{ M}{}_{9}\text{B},$ $\sigma_{\text{тепл.нейтр.}} = 1.75 \text{ барн}.$		
(n,α)	Наиболее важные реакции: $n + {}_{3}^{6}\text{Li} \rightarrow {}_{1}^{3}\text{H} + \alpha + 4.78 \text{ MpB},}$ $\sigma_{\text{тепл.нейтр.}} = 945 \text{ барн},}$ $n + {}_{5}^{10}\text{B} \rightarrow {}_{3}^{7}\text{Li} + \alpha + 2.79 \text{ MpB}}$ $\sigma_{\text{тепл.нейтр.}} = 3840 \text{ барн}}$		
(n,2n)	Пороговая реакция. Порог ~10 - 15 МэВ. Сечение: несколько десятых барн.		
(n,f)	В подавляющем большинстве случаев пороговая реакция. Сечение очень мало, исключая отдельные случаи $^{235}_{92}$ U , $^{238}_{92}$ U и т.д.		

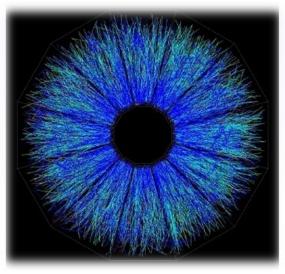
6. Использование эффектов взаимодействия ядерных излучений с веществом

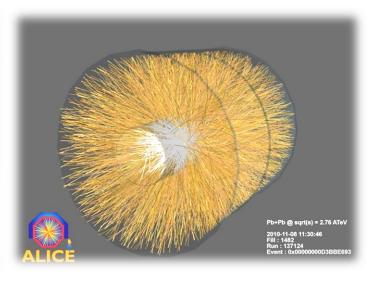



5.1. Физика частиц


В современных ускорительных экспериментах применяются многослойные детекторы частиц:


- траектории и импульсы заряженных частиц определяют с помощью трековых камер,
- энергии электронов и гамма-квантов измеряют в электромагнитных калориметрах,
- энергии ядерно-активных частиц в адронных калориметрах,
- для идентификации мюонов используются периферические участки детекторов.


ATLAS



e+ e- collision in the ALEPH Experiment/LEP.

Au+ Au+ collision in the STAR Experiment/RHIC Up to 2000 tracks

Pb+ Pb+ collision in the ALICE Experiment/LHC Up to 10 000 tracks/collision

Гамма-астрономия

Гамма-телескоп «Ксения» (орбитальная станция «Мир» с 1991 по 2000 год)

Основные характеристики				
Плотность ксенона	0.6 г/см ³			
Концентрация водорода	0.26 %			
Плотность ксенона при 23° С	55 атм			
Напряженность электрического поля	2.6 кВ/см			
Максимальное время дрейфа электронов	15 μs			
Энергетический диапазон	0.1÷5 МэВ			
Чувствительный объем	1000 см ³			
Чувствительная площадь	100 см ²			
Энергетическое разрешение (662 кэВ)	3.5±0.25%			
Энергетическое разрешение (1 МэВ)	(2.0±0.2)%			
Эффективность по фотопику (662 кэВ)	(4.5±0.2)%			
Эффективность по фотопику (1.33 МэВ)	(1.5±0.1)%			
Потребляемая мощность	15 Вт			
Macca	80 кг			

Детекторы космических мюонов высоких энергий

Мюон, движущийся в среде со скоростью, превышающей скорость света в этой среде, испускает черенковское излучение под углом, зависящим от энергии мюона и

показателя преломления среды.

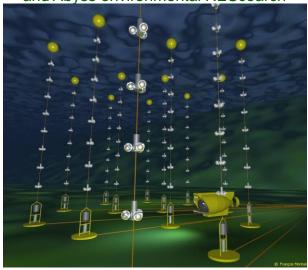
 $\frac{c}{n} < U < c$

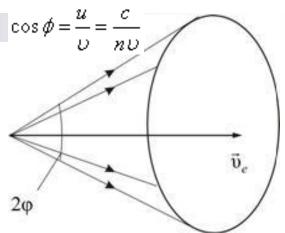
Байкальский нейтринный телескоп ИЯИ РАН

6.25 M

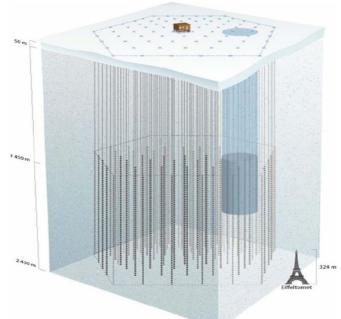
озеро Байкал

Для электронов

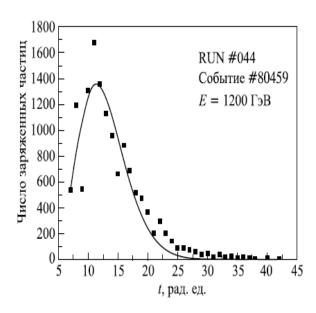

Для протонов

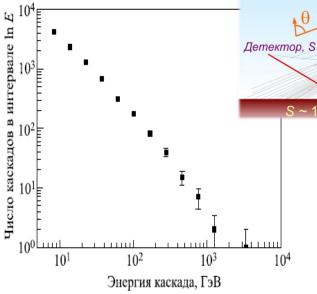

 $W>10^5\,\mathrm{pB}$

 $W > 10^8 \mathrm{pB}$


ANTARES

Astronomy with a Neutrino Telescope and Abyss environmental REScearch



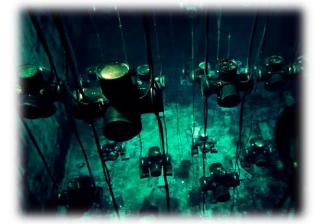

ICECUBE
Нейтринный телескоп с
объемом 1 км³ на Южном
полюсе

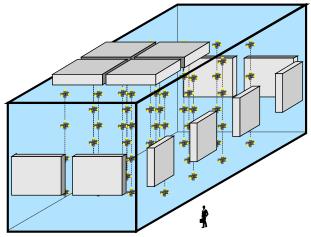
Антарктида, Южный полюс

НЕВОД-ДЕКОР (10¹⁵ – 10¹⁹ эВ)

Измеренный энергетический

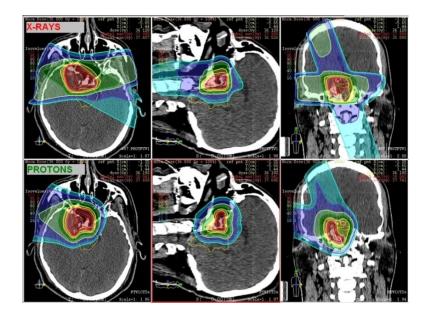
спектр горизонтальных ливней

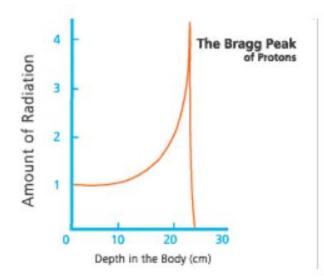


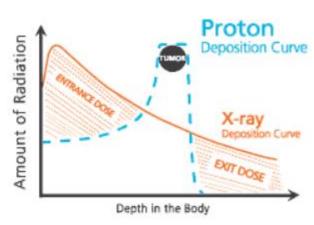

 $D \sim m/S$

μ, е

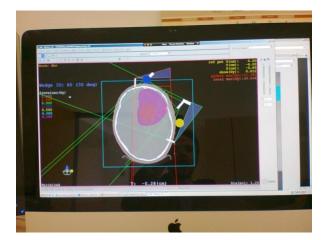
Восстановление каскадной кривой ливня от горизонтального мюона

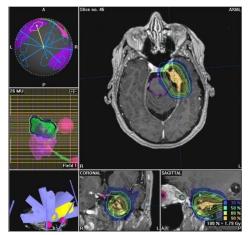


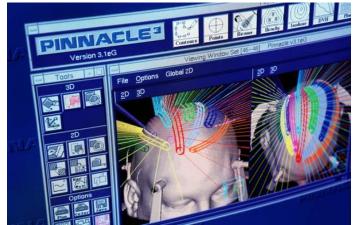




5.2. Ядерная медицина

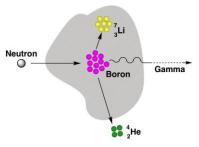


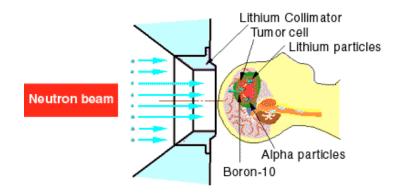




Выпускники МИФИ планируют лучевую терапию с помощью Кибер-Ножа в Центре детской онкологии и гематологии им. Дмитрия Рогачева

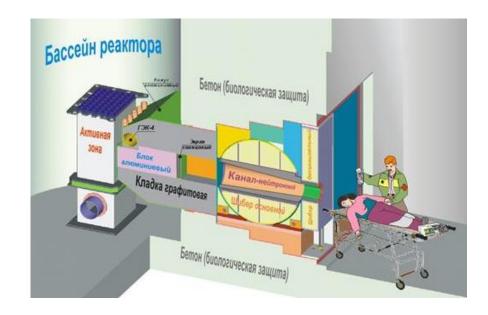
Программа планирования лучевой терапии XiO компании Elekta.





Нейтрон-захватная терапия

$$^{10}\text{B} + \text{n}_{\text{th}} \rightarrow \text{[11B]} * \rightarrow \alpha + {^{7}\text{Li}} + 2.31 \text{ MeV}$$


$$^{157}\text{Gd}$$
 + n_{th} (0.025eV) \rightarrow [^{158}Gd] \rightarrow ^{158}Gd + γ + 7.94 MeV

ИРТ МИФИ

Позитронная эмиссионная томография (ПЭТ)

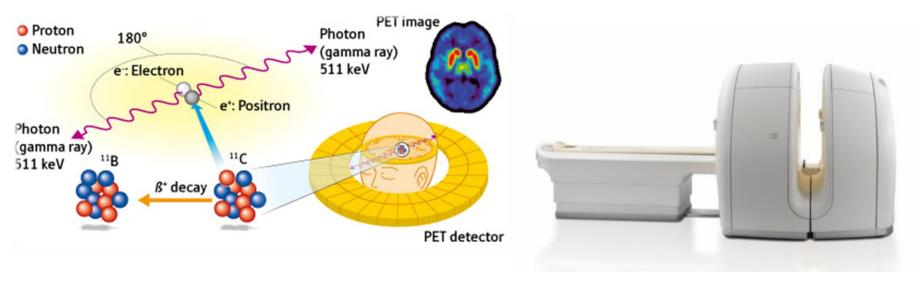
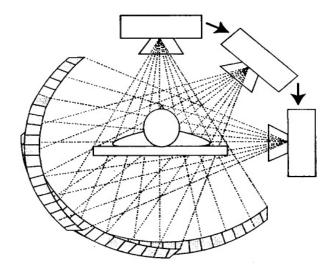
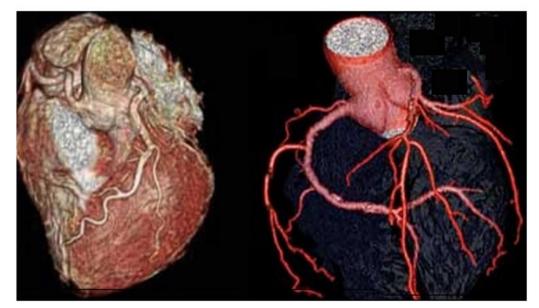
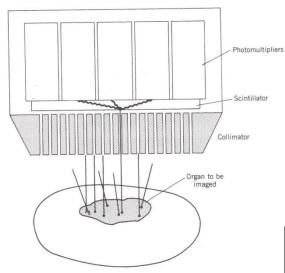
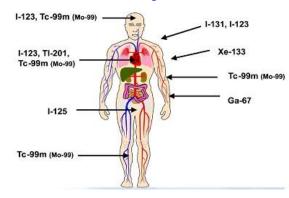



Table 2. Radio-isotopes used in PET

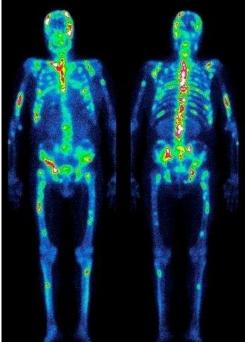

	Table 2. Natio-isotopes used in FE1				
Isotope	Half life	Decay	Proton energy range [MeV]	Utilization	
¹¹ C	20.4 min	β+	6-25	Indicator of cellular activity	
¹⁵ O	2.1 min	β+	5-21	Indicator of tumour necrosis	
¹⁸ F	109 min	β+	3-20	Metabolism of the glucose	
⁸¹ Rb	4.6	β+	>20	Myocardium and brain	

ПЭТ/КТ

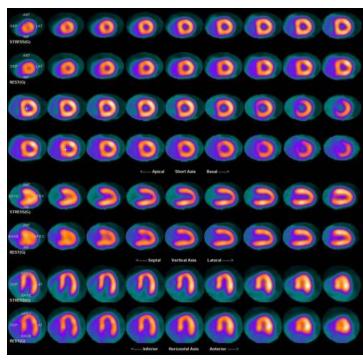

Рентгеновская томография



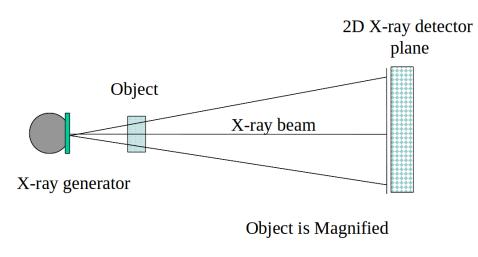
Однофотонная эмиссионная компьютерная томография (ОФЭКТ)



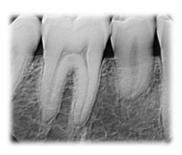
Гамма-камера



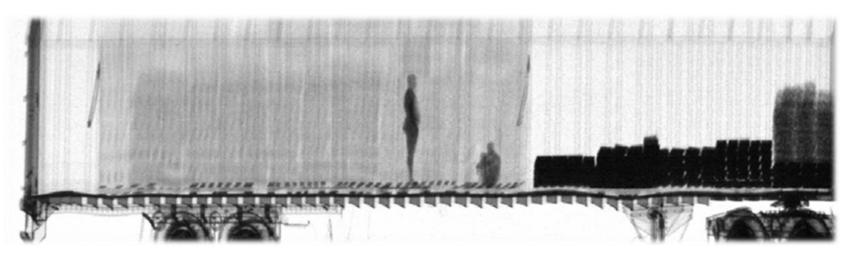
Онкология

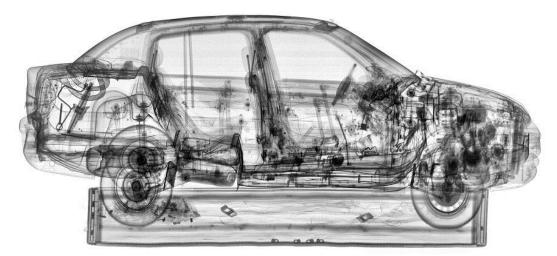


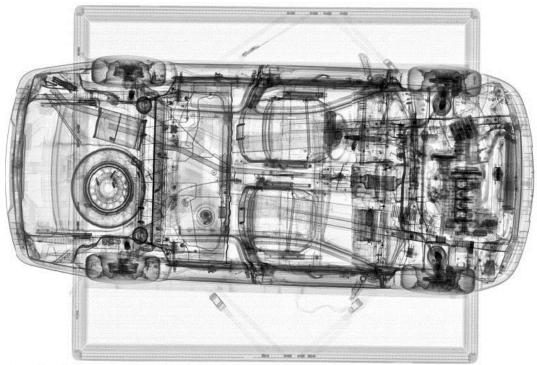
Кардиология



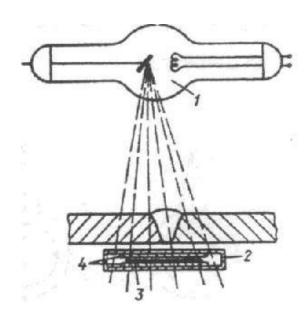
5.3. Радиография


Рентгеновская и гамма-радиография





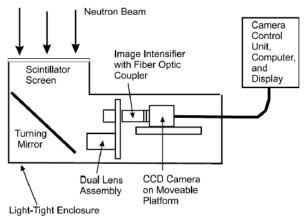
Промышленная радиография



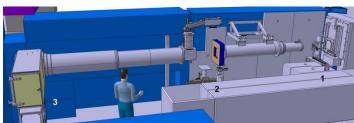
L3 Communications, Security, And Detection Systems

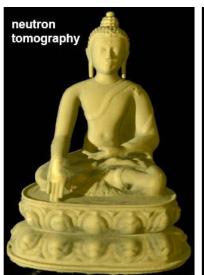
X-Ray Imaging: 2 mm Resolution 9 MeV

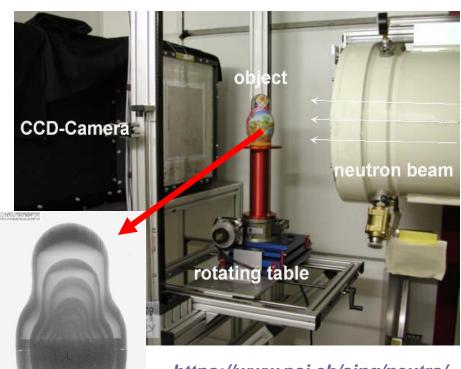
Дефектоскопия



PAUL SCHERRER INSTITUT


Нейтронная томография




Томограф NEUTRA (PSI)

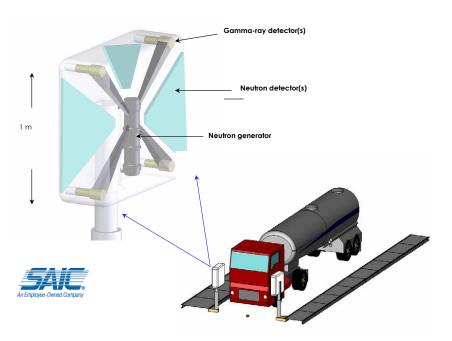
- Размер образца 4х4 –30х30 см
- Динамический диапазон до 16 бит
- пиксель 0.02 -0.15 мм
- число пикселей 1024 до 2048 (X, Y)

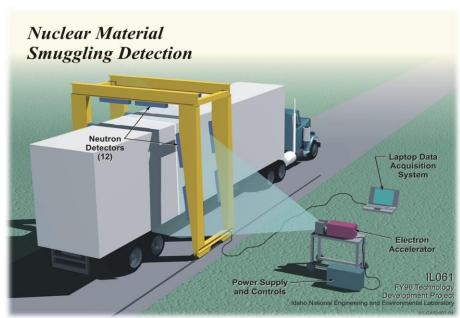
https://www.psi.ch/sinq/neutra/

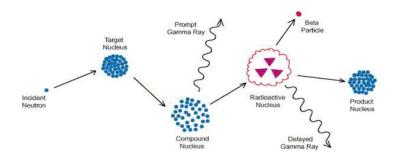
5.3. Противодействие терроризму

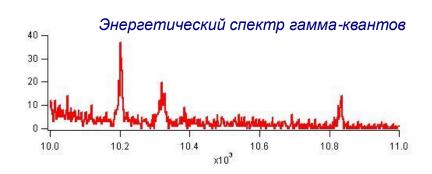
Портальные мониторы ядерных материалов (гамма-спектрометрия)

Canberra

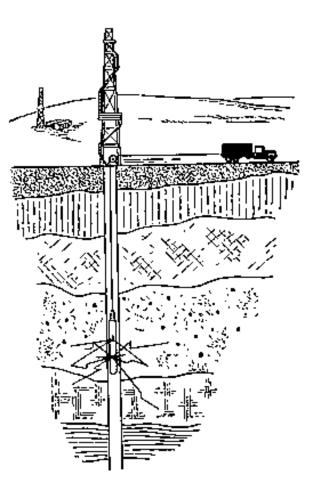

LUNDLUM

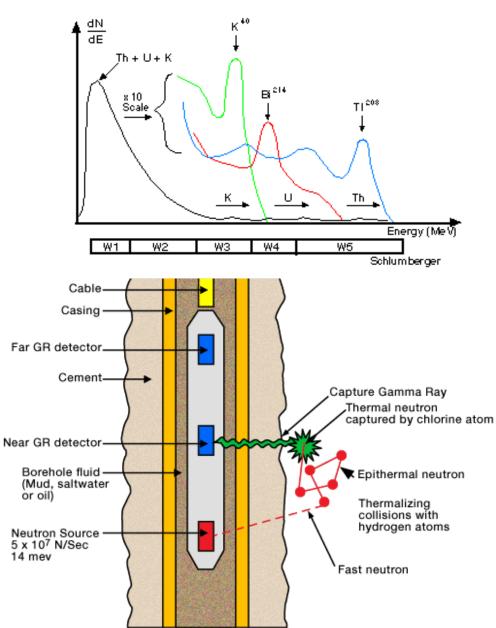





Системы для идентификации химических взрывчатых веществ и ядерных материалов

Нейтронно-активационный анализ





5.4. Геологоразведка

Гамма-каротаж (нефтеразведка)

Вместо Заключения:

«When we have found how the nucleus of atoms is built up we shall have found the greatest secret of all — except life»

Эрнст Резерфорд

Источники информации

- 1. К.Н. Мухин. Экспериментальная ядерная физика. В 3-х тт. СПб.: Издательство «Лань», 2008. Т.1
- 2. Взаимодействие частиц с веществом, http://nuclphys.sinp.msu.ru/partmat/index.html
- 3. Широков Ю.М., Юдин Н.П. Ядерная физика. Изд. 2e. М.: Наука, 1980. Глава VIII. http://review3d.ru/shirokov-yu-m-yudin-n-p-yadernaya-fizika-izd-2e
- 4. K.S.Krane. Introductory Nuclear Physics. Wiley, 1988. Chapter 7; http://www.fulviofrisone.com/attachments/article/446/Krane%20-%20Introductory%20Nuclear%20Physics.pdf.