# 2. INTRODUCTION TO COMPUTER SYSTEMS; COMPUTER SYSTEMS ARCHITECTURE





D. Serikbayev East Kazakhstan Technical University ICT 2020/2021



# **Copyright Notice**

- 2
- This presentation is presented as is. Most of the information is from:
  - The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach
    - 5th Edition, Irv Englander; John Wiley and Sons ©2013
- Other information was collected from various websites or sources across the web.
  - This presentation uses Creative Commons Attribution 4.0 International (CC BY 4.0). © 2021 BilimEdtech



# 2.1: Computers and Systems

3

#### 2.1: Computers and Systems

- 2.2: System Concepts and Architecture
- 2.3: IT System Architecture

## Learning Objectives

- 4
- Understand the Input-Process-Output Model (IPO)
- List the components of a computer system
- Explain the purpose of each component
- Describe virtualization
- Explain the purpose of standards

## **Modern Computing**

#### Personal computing is ubiquitous

- □ It is everywhere and anywhere
- No longer limited to a traditional 'computer'
- Greater variety of computing platforms exist now

#### Computing is widespread

- Embedded in many other types of devices such as appliances and automobiles
- Users no longer have to understand the details of how they work to operate the device

# Why Study Computer System Architecture?

- 6
- Understand system capabilities, strengths, and limitations
- Make better informed decisions
- Improve communications with information technology professionals

## Web Browser Application Example



## Web Browser Application IPO





## Input-Process-Output Model (IPO)



#### 🗆 Input

keyboard, mouse, scanner

#### Process

 CPU executes the computer program

#### Output

monitor, printer, fax machine

#### Storage

 hard drive, optical media, diskettes, magnetic tape

## **Computer System Components**

- Hardware
- Software
- 🗆 Data
- Communication



## **Computer System Components**

#### Hardware

- Processes data by executing instructions
- Provides input and output
- Controls input, output, and storage components

Software

- Applications and system software
- Instructions tell hardware exactly what tasks to perform and in what order

## **Computer System Components**

#### Data

Fundamental representation of facts and observations

Communications

Sharing data and processing among different systems

## Hardware Component

- Input/output devices
- Storage Devices
- CPU Central
  - **Processing Unit**
  - ALU: arithmetic/logic unit
  - CU: control unit
  - Interface unit

#### Memory

 Short-term storage for CPU calculations

### Hardware Components of a PC



## **CPU: Central Processing Unit**

- ALU: arithmetic/logic unit
  - Performs arithmetic and Boolean logical calculations
- CU: control unit
  - Controls processing of instructions
  - Controls movement of data within the CPU
- Interface unit
  - Moves instructions and data between the CPU and other hardware components
  - Bus: bundle of wires that carry signals and power between different components



- 16
- Also known as primary storage, working storage, and RAM (random access memory)
- Consists of bits, each of which hold a value of either
  0 or 1 (8 bits = 1 byte)
- Holds both instructions and data of a computer program (stored program concept)

## Software Component

- Applications
- Operating System
  - API: application program interface
  - File management
  - □ I/O
  - Kernel
    - Memory management
    - Resource scheduling
    - Program communication
    - Security
  - Network Module



# Communication Component (1 of 2)

#### Hardware

- Communication channels
  - Physical connections between computer systems
  - Examples: wire cable, phone lines, fiber optic cable, infrared light, radio waves
- Interface hardware
  - Handles communication between the computer and the communication channel
  - Modem or network interface card (NIC)

## Communication Component (2 of 2)

- Software
  - Establish connections
  - Control flow of data
  - Directs data to the proper applications for use

## **Computer Systems**

All computer systems, no matter how complex, consists of the following:

At least one CPU

Memory to hold programs and data

□ I/O devices

Long-term storage

## **Computer Systems Examples**



### Virtualization

#### 🗆 Virtual

- not physically existing as such but made by software to appear to do so
- Created, simulated, or carried on by means of a computer or computer network
- Virtual computer systems examples
  - memory, networks, and operating systems

### Virtual Private Network (VPN)



#### Real vs. Virtual Keyboard





### **Standards**

- Created to ensure universal compatibility of data formats and protocols
- Examples:
  - Computer languages: Java, SQL, C, JavaScript
  - Display standards: Postscript, MPEG-2, JPEG, PNG
  - Character set standards: ASCII, Unicode, EBCDIC
  - Multimedia standards: MPEG-2, MPEG-4, MP3, DVD-ROM

### **QWERTY Keyboard Layout**

| ~          | ! | (          | Ð   |     | # |   | \$ |   | % | ^ | • | & |   | * |   | ( |        | )   |   | _ | -          | ł        | •        |         |
|------------|---|------------|-----|-----|---|---|----|---|---|---|---|---|---|---|---|---|--------|-----|---|---|------------|----------|----------|---------|
| `          | 1 |            | 2   |     | 3 |   | 4  |   | 5 | 6 | ; | 7 |   | 8 |   | 9 |        | 0   |   | - | =          | =        | Bad      | ckspace |
|            |   | Q          | ב נ |     |   | E |    | R | - | Т |   | Y |   | ) |   | 0 |        |     | Ρ |   | {<br>[     |          | }<br>]   | <br>\   |
| Caps Lock  |   | A          | A   |     |   | D |    | F |   | G |   | Н |   | J | ł | к |        | L   | ; |   | "          |          | Enter    |         |
| shift<br>슈 |   |            | Z   | 2   | X | ( | C  | ; | V |   | В |   | Ν | N | N |   | <<br>, | >   | > | ? | •          | shi<br>슈 | ift<br>⊾ |         |
| Ctrl       |   | Win<br>Key | ,   | Alt |   |   |    |   |   |   |   |   |   |   |   |   |        | Alt |   |   | Win<br>Key | , 1      | Menu     | Ctrl    |

### Protocols

- 27
- Common ground rules of communication between computers, I/O devices, and many software programs
- Examples
  - HTTP: between Web servers and Web browsers
  - TCP/IP: between computers on the Internet and local area networks
  - SATA: between storage devices and computers
  - XML,RSS, SIP: new protocols developed to meet new demands

## **TCP and UDP: Internet Protocols**

- **TCP:** Transmission Control Protocol
  - Ensures delivery of data
  - □ If data is corrupt or not delivered, the data is resent
- □ **UDP:** User Datagram Protocol
  - Data is sent with no confirmation of delivery
  - If data is corrupted, the receiver discards the data

## Summary

- 29
- Input-process-output (IPO) model is a fundamental design of computer system architecture
- A computer is a self-contained system composed of hardware, software, and data that communicates
  - CPU, memory, input/output devices, and storage
- Virtualization is a software-based computer system
- Protocols are standards that define communication rules

# <sup>30</sup> 2.2: System Concepts and Architecture

#### 2.1: Computers and Systems

#### 2.2: System Concepts and Architecture

2.3: IT System Architecture

## Learning Objectives

- Describe a system
- List the components of a system
- Describe each component in detail
- Explain system decomposition
- Discuss the difference between system architecture and abstraction

### What is a system?

- What do the following systems have in common?
  - Plumbing system
  - Solar system
  - Home network system
  - Inventory control system

### What is a system?

33

What do the following systems have in common?
 Each is built up from a set of components that are linked together to form what we think of as a single unit.

# Plumbing System



# Solar System



#### Home Network System

------11 Phone line DSL or cable Wireless modem router or cable Network-Ready Network-Attached Printer Storage (NAS)
#### **Inventory Control System**



## Definition of a System

- "A system is a collection of components linked together and organized in such a way as to be recognizable as a single unit"
- Linked components of a system also define a **boundary** for the system
- □ The **environment** is anything **outside** of the system

### General Representation of a System



Environment

## Definition of an Interface

In computing, an interface is a shared boundary across which two or more separate components of a computer system exchange information.

#### **Different Interfaces**



#### A Simple E-Business System





## System Decomposition

- Components
  - May be irreducible or
  - May be subsystems
- Decomposition
  - The division of a system into its components and linkages
  - Hierarchical



## Hierarchy of the Internet



#### System Architecture

45

"The fundamental properties and the patterns of relationships, connections, constraints, and linkages among the components and between the system and its environment are known collectively as the architecture of the system"

## Abstractions of Systems

- 46
- Abstractions are not the real system
  - Representation
  - Organization
  - Simplification



## Abstractions of Systems

- 47
- How are the following two abstractions of a business system different from one another?
- How are these abstractions different from the real business system?

#### **Business Organization Chart**

48



#### **Business Application Architecture**



## Summary

- A system is a set of components that are linked together to form what we think of as a single unit.
  - Components may be a single unit or a subsystem
  - The links could be permanent, temporary, tangible, intangible
  - The environment interacts with the system through interfaces
- System architecture is the fundamental properties and the patterns of relationships and connections among the components and between the system and its environment.
- System abstraction is a **representation** of the architecture

## <sup>51</sup> 2.3: IT System Architecture

#### 2.1: Computers and Systems

- 2.2 System Concepts and Architecture
- 2.3: IT System Architecture

## Learning Objectives

- 52
- Explain the purpose IT system architectures
- □ List three types of distributed processing systems
- Describe client-server, cloud, and peer-to-peer computing
- Gives examples of client-server architecture
   Compare the three types of cloud-computer services

## **Application Architecture**

- Characterized by the flow and processing of data
  - Within an organization
  - Between organizations
  - Between an organization and its environment



## **IT System Architectures**

System concepts are applicable to IT systems □ IT systems □ <u>Complex</u> Multi-layered (with numerous subsystems)



#### Distributed processing systems

#### 55

#### Today's organizations rely on communication and



## **Distributed Processing Systems**

Client-Server Computing Two-tier architecture Three-tier architecture N-tier architecture Cloud Computing Peer-to-Peer Computing



## **Client-Server Computing**

- A program on a client computer requests services from a server computer
- Examples of services:
  - Email, file, print, directory, Remote Mail Server Remote Mail Server
    web, database, application, remote access services



## Basic Two-tier Client-Server Architecture

58

Two-tier architecture simply means that there are two computers involved in the service.



#### Web browser-Web server Model





## Clients and Servers on a Network

Dedicated server Running a single service □ Shared server Running multiple services S2 is a shared server



## Advantages of Client-Server Architecture

- 61
- Centralization of services permits
  - easier administration of services by IT professionals
  - easier availability and location by users
  - consistency of resources, such as files and data, can be managed and assured



#### **Multi-tier Architectures**

- Two-tier architecture
  - Two computers are involved in a service
- Three-tier architecture
  - Three computers are involved in a service
- N-tier architecture
  - N number of computers involved in a service

## Multi-tier Architectures: Two-tier

Two-tier architecture Two computers are involved in a service Web browser and Web server model used in intranets and on the Internet



**Client Applications** 

### Multi-tier Architectures: Three-tier

- Three-tier architecture
  - Three computers are involved in a service
  - Example: a client computer, a web server, and a database server



#### Three-tier Web-based Email Architecture



### Multi-tier Architectures: N-tier

- N-tier architecture can:
  - Result in better overall control
  - Simplify system upgrades
  - Minimize scalability issues



Tiers can be added or removed to meet demand

# Cloud Computing (1 of 2)

- Cloud computing includes:
  - Server
  - Virtual desktops
  - Software platforms
  - Applications
  - Storage



## Cloud Computing (2 of 2)

- 68
- □ Software as a service (SaaS)
- Platform as a service (PaaS)
- Infrastructure as a service (laaS)



## Software as a service (SaaS)

69

- Software as a service (SaaS)
   applications that run on a server
  - data processing may be divided on server and client



## Platform as a Service (PaaS)

- Platform as a service (PaaS)
   used to host an application or service
  - Virtually hosts websites, databases, or operating systems



## Infrastructure as a Service (laaS)

- 71
- Infrastructure as a service (laaS): Virtualized hardware systems
- Infrastructure is composed of resources that support the flow, storage, processing, and analysis of data.



## Infrastructure as a Service (laaS)

 Infrastructure as a service (laaS)
 cloud-based hardware emulation of virtual machines and networking


### Peer-to-Peer Computing

73

- Computers on a network are treated as equals
- Each computer can share resources with the other computers on the network



## Peer-to-Peer Computing: Disadvantages

#### Disadvantages

- Difficult to locate services
- Difficult to synchronize versions of files or software
- Difficult to secure network from unauthorized access and from viruses



### Peer-to-Peer Computing: Advantages

- Advantages
  - Easy to set up, no need for a server
  - Sharing files between personal computers
  - If a client goes offline, the files are still available on another



# Hybrid Model of Computing

- Client-server technology used to locate systems and files
- Then systems can participate in peer-topeer transactions



#### Summary

- Application architecture is characterized by the flow and processing of data
- Distributed processing systems are examples of application architecture. DPS Computing models:
  - **Client-server**: a client requesting information from a server
  - **Cloud:** using virtualized servers and systems on the internet
  - Peer-to-peer: clients communicate to each other without a server

#### **Attribution Notice**

78

This presentation was assembled using information found online and referenced materials. Attribution is provided of borrowed materials if the author is clearly identified. Unreferenced materials are common knowledge or commonly found online without knowing the original author.