Лекция 2 Бетон

Бетон – композитный материал, в котором крупный и мелкий заполнители, соединенные вяжущим (цемент, жидкое стекло), сопротивляются нагрузкам как одно монолитное тело.

Бетону можно придавать определенные заранее заданные свойства

- к прочностным свойствам относятся нормативные и расчетные характеристики бетона при сжатии и растяжении, сцепление бетона с арматурой;
- к физическим водонепроницаемость, морозожаростойкость, коррозионная стойкость, огнестойкость;
- к деформативным сжимаемость и растяжимость бетона под нагрузкой, ползучесть и усадка, набухание и температурные деформации.

2.1 Классификация бетонов

По основному назначению:

- конструкционные;
- специальные (жаростойкие, химически кислотостойкие, радиоционно-защитные);

По виду вяжущего:

- цементные;
- известковые;
- шлаковые;
- гипсовые;
- специальные (органические и неорганические).

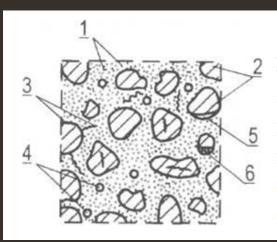


Рис. 2.1 Структура бетона: 1 - окаменевший цементно-песчаный раствор; 2 - зерна крупного заполнителя; 3 - структурные трещины в матрице и на границе зерен заполнителя; 4 -крупные поры и капилляры; 5 - пустоты под зернами крупного заполнителя; 6 - разрыхленная порами структура цементного камня под отдельными зернами крупного заполнителя

По структуре:

- Плотные бетоны;
- крупнопористые бетоны;
- поризованные бетоны;
- о ячеистые бетоны.

По средней плотности (марка бетона, D):

- особо тяжелые (р > 2500 кг/м3);
- \circ тяжелые ($\rho = 2200 \div 2500 \text{ кг/м3}$);
- облегченные (чаще мелкозернистые) (ρ = 1800 ÷ 2200 кг/м3);
- \circ легкие ($\rho = 800 \div 1800 \text{ кг/м3}$).

По условиям твердения:

- бетоны естественного твердения;
- бетоны, подвергнутые тепловлажностной обработке при атмосферном давлении;
- о бетоны, подвергнутые автоклавной обработке при высоком давлении и температуре.

По виду заполнителей:

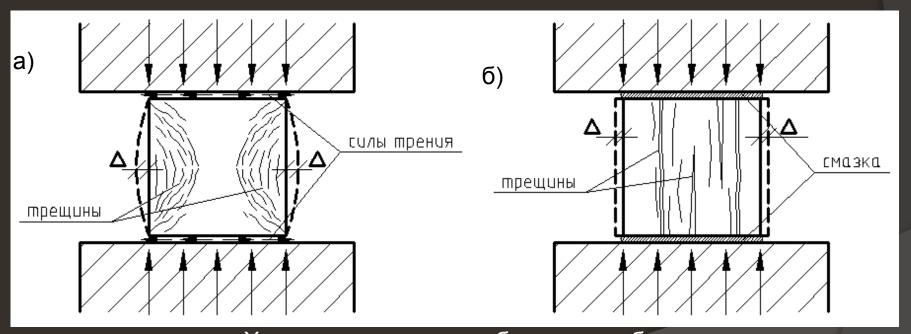
- на плотных заполнителях (щебень, песок, гравий);
- на пористых заполнителях (естественных пемза, перлит, ракушечник; искусственных керамзит, шлак);
- о на специальных заполнителях.

По зерновому составу:

- о крупнозернистые;
- о мелкозернистые.

Физические свойства бетона

- Водонепроницаемость материала его способность не пропускать воду (марка W2)
- Морозостойкость способность материала в увлажненном состоянии сопротивляться разрушающему воздействию попеременного замораживания и оттаивания. (марка F25)
- Жаростойкость способность бетона сохранять прочность при длительном воздействии высоких температур (выше 200 °C).
- Огнестойкость, измеряемая в часах, способность бетона сохранять прочность при воздействии открытого огня (1000...1100°C).
- Коррозионная стойкость способность бетона не вступать в химическую реакцию с окружающей средой.


2.2 Прочностные свойства бетона

Факторы, влияющие на прочность бетона:

- о структура бетона;
- о марка цемента;
- водоцементное отношение В/Ц;
- вид мелкого и крупного заполнителя;
- условия твердения;
- вид напряженного состояния;
- форма и размеры сечения;
- длительность действия нагрузки.

2.2.1 Кубиковая прочность бетона

За кубиковую прочность бетона принимают временное сопротивление R эталонных кубов размером 150х150х150 мм, испытанных при температуре (20 ± 2)°С через 28 дней твердения в нормальных условиях (температуре воздуха 15...20°С и относительной влажности 90...100%).

Характер разрушения бетонных кубов: а – несмазанный куб; б – смазанный куб; Δ – поперечные деформации бетона

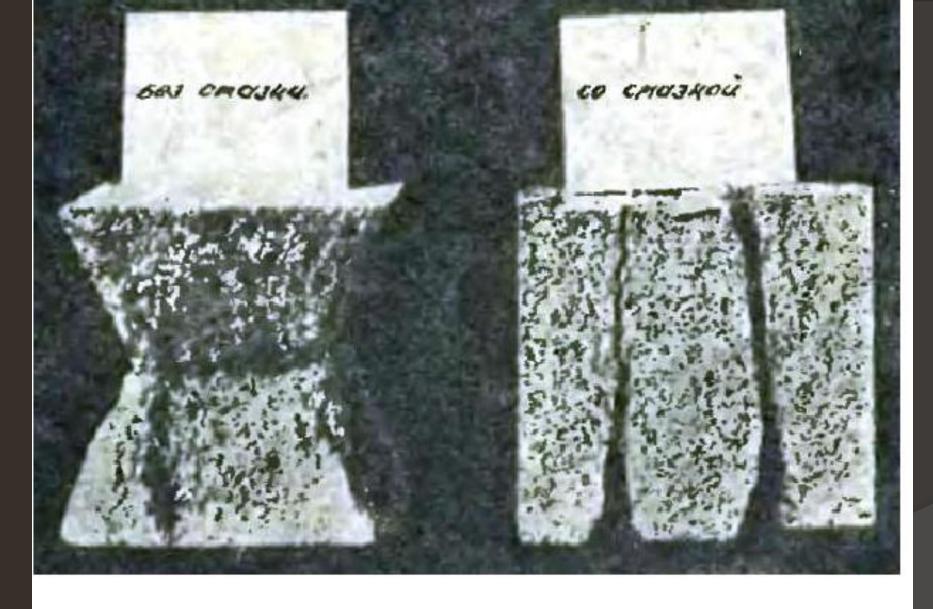
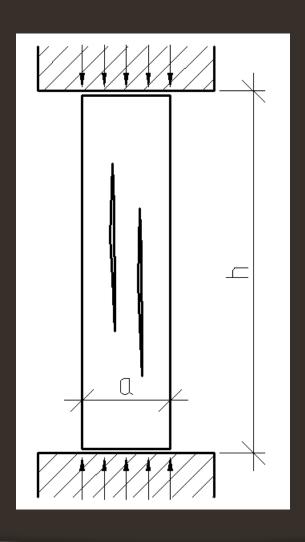



Рис. 2.4. Схема деформирования бетона при сжатии

- а) при наличии трения по опорным плоскостям;
- б) при отсутствии трения; 1 смазка

2.2.2 Призменная прочность

Под призменной прочностью понимают временное сопротивление R_b осевому сжатию призмы с отношением высоты призмы h к размеру α квадратного основания, равным 4.

2.2.3 Прочность бетона на осевое растяжение

 $R_{bt} = 0.1R_b \dots 0.05R_b$

Ориентировочное значение R_{bt} можно определить по эмпирической

формуле Фере:

$$R_{bt} = 0.234 \sqrt[3]{R^2}$$

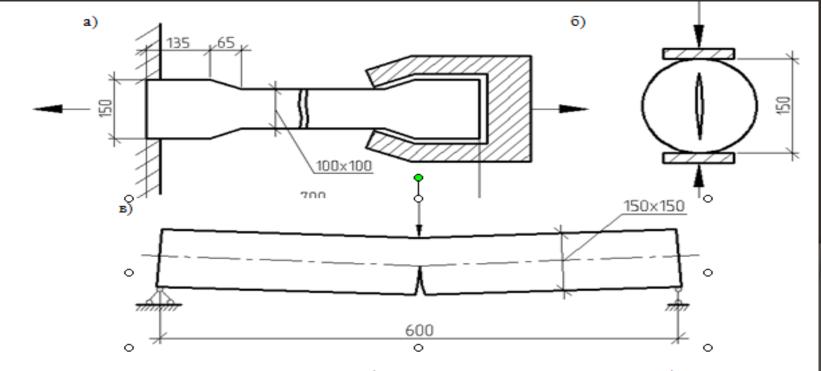


Рис. 4. Схемы испытания образцов для определения прочности бетона при осевом растяжении: а - на разрыв; б — на раскалыванив; g — на изгиб.

2.2.4 Прочность бетона на срез и скалывание

На срез

$$R_{sh}=2R_{bt}$$

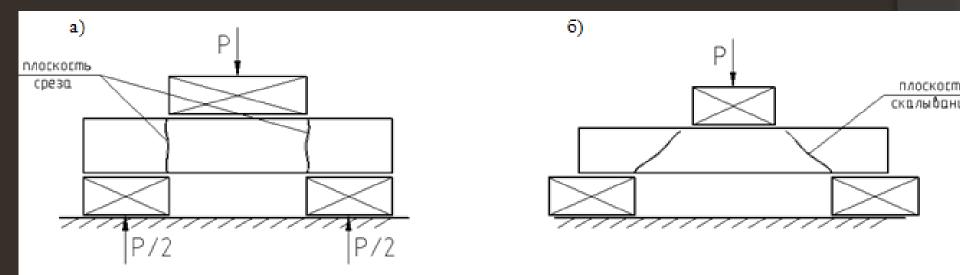


Рис. 5. Схемы испытания образцов на срез (a) и скалывание (δ) .

2.3 Прочностные характеристики бетонов

- Rb сопротивление бетона сжатию
- Rbt сопротивление бетона растяжению
- Rbh сопротивление бетона срезу
- Rы сопротивление длительному напряжению
- Rloc сопротивление местному сжатию

Таблица 6.8

		Pacu	счетные сопротивления бетона R_b , R_{bb} , МПа, для предельных состояний первой группы при классе бетона по прочности														OCTU						
Вид	Бетон	на сжатие															ости						
Бид																							
		B1,5	B2	B2,5																B70	B80		B100
Сжатие	Тяжелый,	-	***	-	2,1	2,8	4,5	6,0	7,5	8,5	11,5	14,5	17,0	19,5	22,0	25,0	27,5	30,0	33,0	37,0	41,0	44,0	47,5
осевое	мелкозер-																						
(призмен-	нистый и								1														
ная	напрягаю-																						
прочность)	щий																						
R_h	Легкий	_	-	1,5	2,1	2,8	4,5	6,0	7,5	8,5	11,5	14,5	17,0	19,5	22,0	-	-	-	-	_	_		-
1	Ячеистый	0,95	1,3	1,6	2,2	3,1				7,7	-	_		_	_	_	_	-	_	_		_	-
Растяже-	Тяжелый,	-	-	-	0,26	0,37	0,48	0,56	0,66	0,75	0,90	1,05	1,15	1,30	1,40	1,50	1,60	1,70	1,80	1,90	2,10	2,15	2,20
ние осевое	мелкозер-																						
$R_{h\prime}$	нистый и																						
	напрягаю-																						
	щий																						
	Легкий	-	_	0,20	0,26	0,37	0,48	0,56	0,66	0,75	0,90	1,05	1,15	1,30	1,40		~-	-			_	_	_
	Ячеистый	0,09	0,12	0,14	0,18	0,24	0,28	0,39	0,44	0,46	_	-	_	_	-	_	_	_	_	_	_	_	-

Примечания

и равного $\gamma_{b,br} = \frac{360 - B}{300}$, где B – класс бетона по прочности на сжатие.

¹ Значения сопротивлений приведены для ячеистого бетона средней влажностью 10 %.

² Для мелкозернистого бетона на песке с модулем крупности 2,0 и менее, а также для легкого бетона на мелком пористом заполнителе значения расчетных сопротивлений R_M следует принимать с умножением на коэффициент 0,8.

³ Для поризованного бетона, а также для керамзитоперлитобетона на вспученном перлитовом песке значения расчетных сопротивлений R_w следует принимать как для легкого бетона с умножением на коэффициент 0.7.

⁴ Для напрягающего бетона значения R_{bt} следует принимать с умножением на коэффициент 1,2.

⁵ Для тяжелых бетонов классов B70-B100 расчетные значения сопротивления осевому сжатию R_b и осевому растяжению R_{br} приняты с учетом дополнительного понижающего коэффициента $\gamma_{b,br}$. учитывающего увеличение хрупкости высокопрочных бетонов в связи с уменьшением деформаций ползучести

Расчетные значения сопротивления бетона осевому сжатию и осевому растяжению

$$R_{b} = \frac{R_{b,n}}{\gamma_{b}};$$

$$R_{bt} = \frac{R_{bt,n}}{\gamma_{bt}}.$$

γ_b - коэффициент надежности по бетону при сжатии;

ү_{bt} - коэффициент надежности по бетону при растяжении

Прочность бетона при длительном действии нагрузки

Предел длительного сопротивления бетона R_{bl} - наибольшие статические неизменные во времени напряжения, которые он может выдерживать неограниченно долгое время без разрушения.

$$R_{bl} \approx 0.9 R_{bl}$$

Прочность бетона при многократно повторных нагрузках (подвижных или пульсирующих)

- предел выносливости бетона - напряжение, при котором количество циклов нагрузки и разгрузки, необходимых для разрушения образца, составляет > 1 000 000.

Практический предел выносливости при количестве циклов n = 2 • 10⁶ имеет наименьшее значение R_r = 0,5R_b

Прочность при местном сжатии (смятии) R_{b,loc}

Передача давления только на часть площади конструкции (места опирания)

$$R_{b,loc} = \varphi_b R_b$$

$$\varphi_b > 1$$

2.4 Классы бетона

Класс — это ряд эталонных чисел на числовой оси, привязанных к прочности на сжатие и растяжение, задаваемых при проектировании с обеспеченностью 0,95 прочностных свойств.


- Класс по прочности на сжатие В;
 в пределах от В 1,5 до В 100.
- Класс по прочности на осевое растяжение B_t;
 в пределах от B_t0,8 до B_t4.

Марки бетона

Марка оценивает основные физические свойства бетона (обеспеченность 50%).

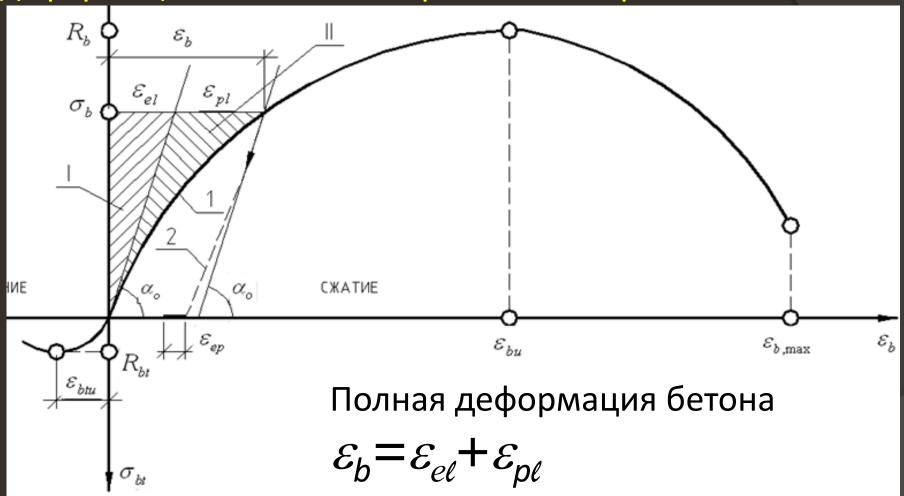
- Марка по морозостойкости F (от F 15 до F 1000);
- Марка по водонепроницаемости W (от W2 доW20);
- Марка по средней плотности D (от D 500 до D2000);
- Марка по самонапряжению Sp значение предварительного напряжения в бетоне (МПа)

ДЕФОРМАТИВНЫЕ СВОЙСТВА БЕТОНА

- С физической точки зрения бетон представляет собой капиллярнопористое тело, в котором присутствуют все три фазы: твердая, жидкая и газообразная.
- цементный камень, скрепляющий бетон, также неоднороден и состоит из упругого кристаллического состава и вязкой массы – геля, таким образом, это наделяет бетон упруго-пластичноползучими свойствами

Виды деформаций бетона

1) Собственные деформации:


- <u>бетонной смеси</u> (первоначальная усадка),
- <u>затвердевшего бетона</u> (усадка и набухание), возникающие под действием физикохимических процессов, протекающих в бетоне

2) Деформации от действия внешних нагрузок:

- при однократном кратковременном загружении;
- при длительном загружении;
- при многократно повторных нагружениях.
- 3) Температурные деформации бетона.

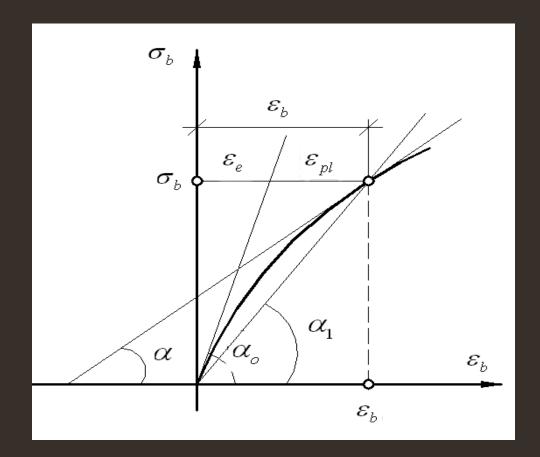

Нелинейное деформирование бетона - при малых напряжениях помимо упругих деформаций, развиваются неупругие остаточные или пластические деформации.

Диаграмма зависимости между напряжениями и деформациями в бетоне при сжатии и растяжении

I — область упругих деформаций; II — область пластических деформаций; 1 — загрузка; 2 — разгрузка; єbu — предельная сжимаемость; єbtu — предельная растяжимость; єер — доля неупругих деформаций, восстанавливающихся после разгрузки.

Модуль деформации бетона

Начальный модуль упругости бетона при сжатии E_b соответствует лишь упругим деформациям, возникающим при мгновенном загружении:

$$E_b = rac{\sigma_b}{arepsilon_{e\ell}}$$
 или $E_b = t g lpha_0$

Модуль полных деформаций бетона при сжатии соответствует полным деформациям; является величиной переменной:

$$E_b = \frac{\mathrm{d}\,\sigma_b}{\mathrm{d}\,\varepsilon_{\mathit{e}\ell}}\,\,\mathrm{uлu}\,\,E_b = tg\,\alpha$$

модуль упругопластичности бетона при сжатии – это величина, соответствующая тангенсу угла наклона секущей, проходящей через начало координат и точку на диаграмме полных деформаций

$$E_b' = tg\alpha_1$$

Начальный модуль упругости бетона при сжатии E_b соответствует лишь упругим деформациям, возникающим при мгновенном загружении — это величина, соответствующая тангенсу угла наклона касательной к функции диаграммы, проходящей через начало координат

Для расчёта железобетонных конструкций используют модуль упругопластичности (секущий модуль) бетона при сжатии Е'_b — это величина, соответствующая тангенсу угла наклона секущей, проходящей через начало координат и точку на диаграмме полных деформаций

Коэффициент пластичности бетона равен

$$\lambda = \frac{\varepsilon_{p\ell}}{\varepsilon_{e\ell} + \varepsilon_{p\ell}}$$

 $\lambda = \frac{\mathcal{E}_{p\ell}}{\mathcal{E}_{e\ell} + \mathcal{E}_{\eta\ell}}$ Коэффициент упругопластической деформации бетона равен $v = \frac{\varepsilon_{e\ell}}{\varepsilon_{e\ell} + \varepsilon_{pl}}$

модулями $E'_{h} = v \cdot E_{h}$

Коэффициент упругопластической деформации можно выразить через коэффициент пластичности:

$$\nu = \frac{\varepsilon_b - \varepsilon_{p\ell}}{\varepsilon_b} = 1 - \frac{\varepsilon_{p\ell}}{\varepsilon_b} = 1 - \lambda$$

2.6 Реологические свойства бетона

- Ползучесть
- Усадка
- Набухание
- Релаксация

Ползучесть — это свойство бетона, характеризующее нарастание неупругих деформаций с течением времени при длительном действии постоянной нагрузки.

Линейная — при
$$\sigma_b < 0.5 R_b$$
 Нелинейная — при $\sigma_b > 0.5 R_b$

Характеристика ползучести

$$\varphi = \varepsilon_{pl(t)}/\varepsilon_{el}$$

Набухание — это увеличение бетона в объеме при твердении его в воде.

Усадка – уменьшение размеров (со всех сторон) бетонного образца при потере влаги (воды) при твердении.

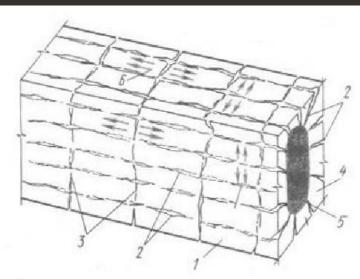
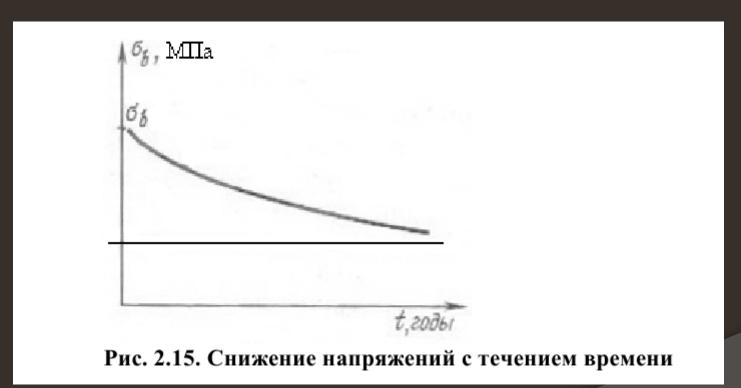


Рис. 2.12. Усадка бетона

1 — фрагмент бетонной балки; 2, 3 — продольные и поперечные усадочные трещины; 4 — наружный (высохший) слой; 5 — внутренний слой;


6 – растягивающие напряжения

Факторы, влияющие на размеры усадки бетона и изменение ее во времени:

- с увеличением цемента на единицу объема возрастает усадка;
- с увеличением водоцементного отношения (В/Ц) усадка увеличивается;
- чем выше влажность при твердении бетона, тем больше усадка

Набольшее влияние усадка оказывает в начальный период твердения

Релаксация — это уменьшение с течением времени напряжений при постоянной деформации.

Реология (от греч. ρέος, «течение, поток» и -логия) — раздел физики, изучающий деформации и текучесть вещества. Изучая деформационные свойства реальных тел, реология занимает промежуточное положение между теорией упругости и гидродинамикой. Термин «реология» ввёл американский учёный Юджин Бингам.

Типичное увеличение деформации (ползучесть) при постоянном значении приложенной силы F с течением времени t. (2) Типичный график релаксации - уменьшения усилия при постоянной деформации с течением времени.

Исходные понятия реологии — ньютоновская жидкость, вязкость которой не зависит от режима деформирований, и идеально упругое тело, в котором в каждый момент времени величина деформации пропорциональна приложенному напряжению. Эти понятия были обобщены для тел, проявляющих одновременно пластичные (вязкостные) и упругие свойства. Практические приложения реологии описывают поведение конкретных материалов при нагрузках и при течении.