5 СОВРЕМЕННЫЕ МЕТОДЫ ПРОЕКТИРОВАНИЯ ПРОДОЛЬНОГО ПРОФИЛЯ

- 5.1 Принципы построения проектной линии продольного профиля
- 5.2 Оптимизационные и не оптимизационные методы
- 5.3 Анализ плавности проектной линии продольного профиля дороги, построенной с помощью квадратических парабол
- 5.4 Проектная линия, построенная с помощью кубических парабол (кубических сплайнов)
- 5.5 Преимущества проектной линии, построенной из кубических парабол
- 5.6 Проектирование продольного профиля в режиме оптимизации

5.1 Принципы построения проектной линии продольного профиля

При построении проектной линии продольного профиля точно также используются два принципа: *тангенциальный* и *сплайнов*. В первом случае используется метод тангенсов — строится ломаный ход и в образовавшиеся углы перелома вписываются вертикальные кривые. Во втором случае строится сначала эскизная проектная линия, а затем она аппроксимируется различными функциями.

Метод тангенсов реализован в программе PLATEIA (Словения).

5.2 Оптимизационные и не оптимизационные методы

Различают оптимизационные и неоптимизационные методы автоматизированного проектирования продольного профиля. В неоптимизационных методах идёт многовариантная проработка проектной линии. На выбор окончательного варианта в них значительное влияние оказывает субъективный фактор.

В оптимизационных методах окончательный вариант выбирается с помощью целевой функции. Оптимальным считается тот вариант, для которого целевая функция принимает минимальное значение:

$$K^*=\min(K_1, K_2, ..., K_n).$$
 (5.1)

В самом простом случае в качестве целевой функции принимаются строительные затраты на возведение земляного полотна K_{3n} . В этом случае условие (5.1) можно выразить через минимизацию суммы квадратов рабочих отметок:

$$K = \sum_{i=1}^{N} \left(y_i^{np} - y_i^3 \right)^2 \to \min , \qquad (5.2)$$

где N – количество ординат продольного профиля, y_i^{np} , y_i^3 - проектная отметка оси дороги и отметка земли по оси дороги на i-й ординате соответственно (рис. 5.1).

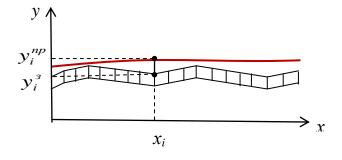


Рисунок 5.1 – Схема к определению целевой функции

5.3 Анализ плавности проектной линии продольного профиля, построенной с помощью квадратических парабол

Традиционно проектная линия продольного профиля конструируется из сопряжённых прямолинейных отрезков, дуг круговых кривых или заменяющих квадратических парабол, у которых радиус на всём протяжении элемента практически постоянен. Критерием плавности проектной линии принято считать согласование продольных уклонов. То есть в точке сопряжения продольный уклон одного элемента должен быть равен уклону другого элемента (рис. 5.2). Однако этот переход от одного элемента к другому не является плавным. Если в точке перехода от одного элемента к другому радиус вертикальной кривой изменяется скачком, то скачком будет изменяться и центробежное ускорение, определяемое по формулам (5.3) и (5.4) для вертикальных кривых с радиусами R_1 и R_2 соответственно ($R_1 \neq R_2$):

$$a_1 = \frac{v^2}{2R_1},\tag{5.3}$$

$$a_2 = \frac{v^2}{2R_2} \,, \tag{5.4}$$

где v – скорость автомобиля. Соответственно скачком будет изменяться и центробежная сила, определяемая по формулам

$$F_1 = ma_1 \text{ w } F_2 = ma_2,$$
 (5.5)

где m –масса автомобиля.

Именно в этом проявляется «неплавность» продольного профиля. При большой скорости движения автомобиля скачкообразные изменения центробежной силы будут ощущаться в виде толчков.

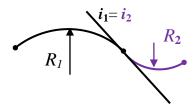


Рисунок 5.2 – Схема сопряжения элементов

Таким образом, плавность проектной линии, в принципе, невозможно обеспечить, применяя в качестве сопрягающего элемента круговые кривые или аппроксимирующие их квадратические параболы. При такой конструкции продольного профиля в точках сопряжения радиус вертикальной кривой всегда будет меняться скачком.

Чтобы обеспечить плавность проектной линии продольного профиля необходимо использовать кубические параболы. Тогда в пределах одного элемента радиусы будут плавно изменяться.

5.4 Проектная линия, построенная из кубических парабол (кубических сплайнов)

Общее уравнение кубической параболы имеет вид:

$$H(x)=H_0+x(I_0+x(C_0+xD))$$
 (5.6)

Здесь H_0 , I_0 , C_0 , D – коэффициенты, имеющие физический смысл:

 H_0 – отметка проектной линии в начале элемента;

 I_0 – уклон касательной к проектной линии в начале элемента;

 C_0 – кривизна проектной линии в начале элемента $\left(C_0 = \frac{1}{2R_0}\right)$ или скорость изменения

уклона;

D — скорость изменения кривизны или ускорение изменения уклона проектной линии в пределах рассматриваемого элемента.



Рисунок 5.3 – Схема кубического сплайна

Если раскрыть скобки, то выражение (5.6) примет вид:

$$H(x)=H_0+I_0x+C_0x^2+Dx^3$$
.

Частными случаями функции (5.6) являются:

- κ вадратическая парабола — элемент с постоянной кривизной, т.е. D=0:

$$H(x) = H_0 + I_0 x + C_0 x^2. (5.7)$$

Данная формула легко переходит в формулу из метода Антонова. В самом деле, за начальную точку элемента принимаем вершину кривой. Как известно, в вершине уклон касательной I_0 = 0‰, отметка H_0 = H_a . Тогда формула (5.7) перепишется в знакомом виде:

$$H(x) = H_e + 0 \cdot x + C_0 x^2 = H_e + \frac{x^2}{2R}.$$

- *прямой отрезок* с нулевой кривизной, т.е. D=0 и C_0 =0. Тогда выражение (5.6) примет вид:

$$H(x) = H_0 + I_0 x. (5.8)$$

Формула (5.8) лежит в основе метода тангенсов. С помощью неё определяются отметки по ломаному ходу.

Таким образом, проектная линия, построенная из кубических парабол, является естественным обобщением известных ранее методов тангенсов и квадратических парабол (Антонова).

При конструировании проектной линии профиля круговыми кривыми (квадратическими параболами) принято, что отдельный конструктивный элемент — это либо выпуклая, либо вогнутая кривая. При использовании кубической параболы в отдельном конструктивном элементе, т.е. в пределах одной кривой может быть и вогнутая и выпуклая ветвь (а может быть и одна — выпуклая или вогнутая).

5.5 Преимущества проектной линии, построенной из кубических парабол

1. Проектная линия, построенная из кубических парабол, обеспечивает бо́льшую безопасность движения. Причина заключается в лучших условиях видимости. Известно, что расстояние видимости на выпуклой кривой S зависит от её радиуса. Величина S определяется по формуле

$$S = \sqrt{2Rh_1} + \sqrt{2Rh_2} \,\,\,\,(5.9)$$

где h_1 — возвышение глаза водителя над поверхностью дороги, h_2 — высота препятствия. При $R=R_{min}$, где R_{min} — минимально допустимое значение радиуса выпуклой кривой для данной категории дороги, расстояние видимости является минимальным $S=S_{min}$. На длинной выпуклой кривой с постоянным радиусом R_{min} есть участок большой протяжённости, в пределах которого имеет место минимальное расстояние видимости. Заменим эту кривую кубической параболой H(x). Т.к. в пределах неё радиус изменяется непрерывно, то существует только одна точка с тем же минимальным значением радиуса R_{min} — точка A, и в её окрестности расстояние видимости будет минимальным.

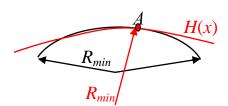


Рисунок 5.4 – Схема к определению расстояния видимости на вертикальной кривой

2. *Ощутимая экономия топлива.* При проезде автомобиля по трассе, сконструированной из кубических парабол при той же разнице начальной и конечной отметок, по сравнению с профилем, построенным из квадратичных парабол. Рассмотрим пример. Интенсивность движения 3000 авт./сут., участок длиной 100 км нижняя оценка годовой экономии топлива составляет 40 м³ или 30 т или 1 ж/д цистерна.

Существенная экономия топлива уменьшает объёмы выбросов вредных веществ, тем самым улучшается экологическая ситуация.

3. Уменьшение объёмов земляных работ. Профиль земной поверхности в силу особенностей формирования рельефа природными воздействиями в значительной степени ближе к кривым с переменными радиусами (кубическим параболам), чем к кривым с постоянными радиусами (квадратичным параболам). Следовательно, проектная линия, построенная по кубической параболе ближе к естественной линии. Рабочие отметки, в общем, будут иметь меньший разброс, а в среднем будут меньше.

Таким образом, продольный профиль, построенный с применением сплайнов, будет лучше вписан в ландшафт местности, особенно с широко волнистым и пересечённым рельефом.

5.6 Проектирование продольного профиля в режиме оптимизации

Проектная линия продольного профиля строится из кубических сплайнов. Перед началом проектирования необходимо для каждой опорной точки задать коды и отметки. Коды точек приведены в таблице. В этом методе не происходит оптимизации проектной линии и также необходим контроль значений радиусов и уклонов.

Таблица 5.1– Коды опорных точек

Код опорной точки	Вид опорной точки
1	Проектная линия пройдёт через точку с заданной отметкой
2	Линия пройдёт через точку с заданной отметкой и фиксированным уклоном
3	Задаётся отметка начала прямой вставки
4	Задаётся отметка конца прямой вставки
5	Точка перелома прямой с заданной отметкой

В данном методе автоматизированным способом проверяются ограничения:

- по минимально допустимым радиусам выпуклых и вогнутых вертикальных кривых;
- максимально допустимым уклонам;
- отметкам контрольных точек;
- способам приближения к линии руководящих отметок (высоты насыпи или глубины выемки).

В этом алгоритме минимизируются критерии:

R — суммарное относительное отклонение кривизны и уклонов проектной линии от заданных ограничений;

W – суммарный дополнительный объём работ.

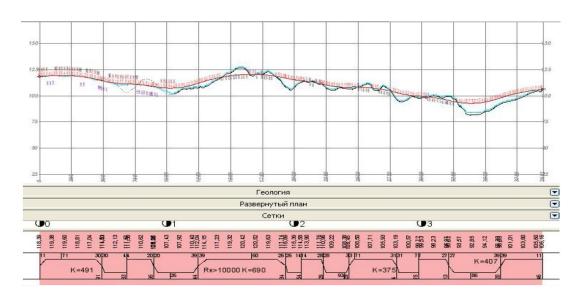


Рисунок 5.5 – Построение продольного профиля в программе CREDO – Дороги

Под суммарным дополнительным объёмом подразумевается объём земляных работ, который необходимо выполнить сверх соответствующих объёмов по проектной линии продольного профиля на уровне руководящей высоты насыпи или глубины выемки.

Источники информации

1. Федотов, Г.А. Изыскания и проектирование автомобильных дорог / Г.А. Федотов, П.И. Поспелов. В 2 кн. Кн.1: Учебник. – М.: Высш. шк., 2009. – 646 с.