внутреннюю и наружную обшивку из асбестоцементных или металлических листов, жестко соединенных с внутренним каркасом. Крупнопанельные стены промышленных зданий по сравнению со стенами из кирпича требуют меньших затрат труда, и масса 1 м² ограждения в 2-3 раза меньше.

Стены неотапливаемых зданий устраивают из плоских предварительно напряженных железобетонных панелей бетон класса B22,5; B30 (рисунок 4.10). Для углов используют удлиненны панели. Стены из таких панелей устраивают навесными, опирающимися на стальные консоли, приваренные к колоннам каркаса (рисунок 4.11).

4.5 Конструктивные решения панельных стен промышленных зданий. Конструкции стыков

Стены отапливаемых зданий устраивают навесными (при толщине панелей 160 мм) или самонесущими.

- Для навесных стен (рисунок 4.12) характерны ленточные проемы и опирание надоконных панелей на стальные консоли. Такие же консоли необходимы и на глухих участках стен через 4,8-6 м по высоте.
- Для самонесущих стен характерны отдельные проемы шириной 3-4,5 м и опирание надоконных панелей на простенки. Высота таких стен зависит от несущей способности панелей.

В навесных и самонесущих стенах цокольные панели (рисунок 4.13, г) укладывают на фундаментную балку по слою гидроизоляции из цементного раствора.

В углах стен отапливаемых зданий (рисунок 4.12, г) устанавливают доборные блоки.

Раскладку панелей по высоте (рисунок 4.12, б) выполняют так, чтобы один из горизонтальных швов располагался на 600 мм от оголовка колонны. Ниже этой отметки панели крепят к колоннам, выше - к конструкциям покрытия. Верх панельных стен завершает парапет или карниз.

Стены неотапливаемых зданий выполняют только навесными из плоских железобетонных панелей толщиной 70 мм. Цокольная часть стен устраивается так же, как и в отапливаемых зданиях. Узлы стен выполняют из удлиненных панелей, уложенных по направлению продольных стен. Панели торцовых стен закрепляют к стойкам фахверка, а продольных стен — к колоннам каркаса. Верхняя часть стен имеет парапет или карниз из стальных профилей, приваренных к подкарнизной панели.

Конструкция стыков. Швы крупнопанельных стен заполняют упругими прокладками из термита или пороизола и герметизируют мастикой (УМ-40, УМС-50). По краям панели (рисунок 4.12) укладывают жесткие прокладки, фиксирующие толщину горизонтальных швов. Заделка швов цементным раствором допускается в виде исключения.

Крепление панелей к колоннам должно быть прочным и податливым при температурных и осадочных деформациях стен.

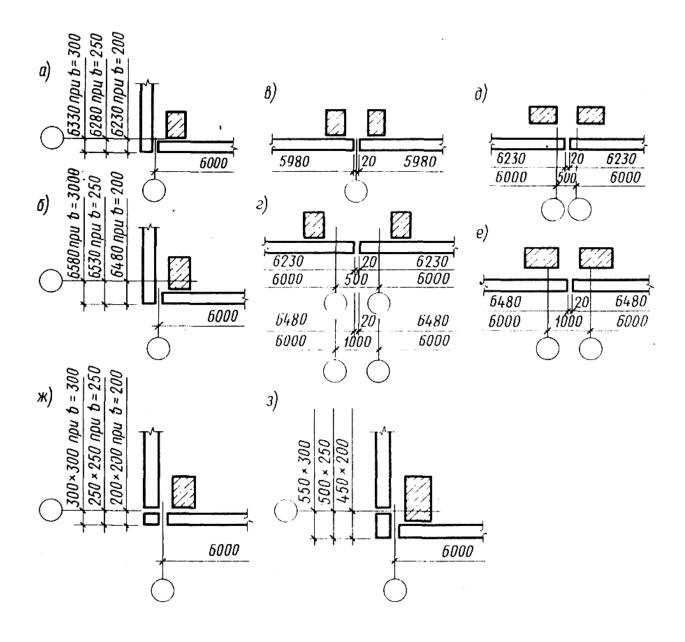


Рисунок 4.11 -Варианты использования удлиненных панелей и доборных угловых блоков наружных стен:

а - удлиненных панелей в углах при привязке «0»; б - то же, при привязке «250»; в - у поперечного шва; г - у поперечного шва со вставкой «500» и «1000»; д - у продольного шва со вставкой «500»; е - то же, со вставкой «1000»; ж - угловых доборных блоков при привязке «0»; ,ч - то же, при привязке «250»

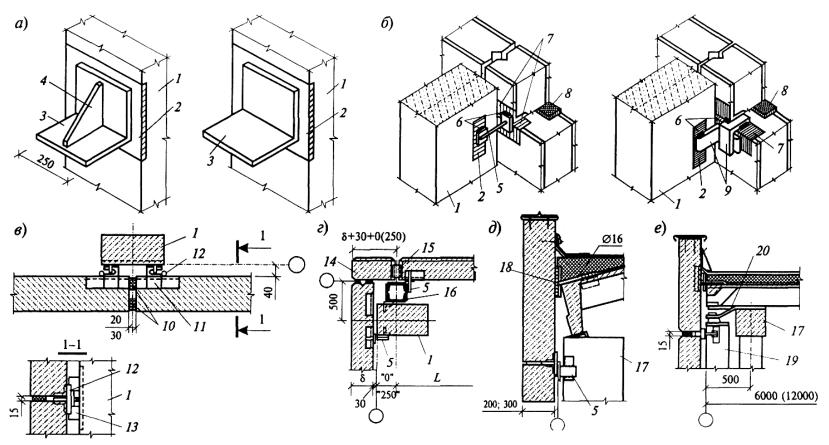


Рисунок 4.12 - Детали конструкций стен из бетонных и железобетонных панелей:

а - консольные столики для опирания панелей; б - варианты гибкого крепления панелей к колоннам; в - скрытое крепление посредством скобы и крюка; г - крепление угловых панелей; д - крепление стеновой панели к покрытию по продольной оси (нулевая привязка); е - крепление фронтонной панели торцевой стены; 1 - колонна; 2 - закладная деталь; 3 - консольный столик из уголка; 4 - диафрагма; 5 - гибкая связь; 6 - сварка при монтаже; 7 - закладной элемент панели; 8 - синтетическая прокладка; 9 - сцеп из уголков 125х14мм длиной 100мм; 10 - герметизирующая мастика; 11 - крюк из пластинки 80х55х14мм; 12 - стержень диаметром 14 и длиной 100 мм; 13 - скоба из пластинки 120х34х12мм; 14 - доборная угловая панель; 15 - посредник 70х6мм; 16 - стойка торцевого фахверка; 17 - ферма; 18 - стержневой сцеп; 19 - стальная надставка фахверковой колонны; 20 - гибкий шарнир

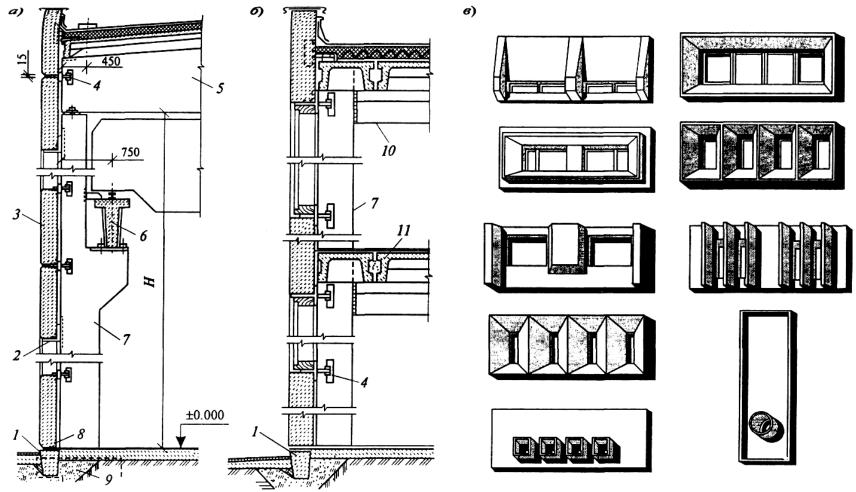


Рисунок 4.13 - Разрезы стен из традиционных крупных панелей одноэтажных и многоэтажных промышленных зданий и новые виды стеновых панелей:

а - разрез стены одноэтажного здания; б - то же, многоэтажного; в - стеновые панели с рельефной наружной поверхностью и встроенными окнами и вентиляционными проемами; 1 - фундаментная балка; 2 - стальной опорный столик; 3 - легкобетонная панель; 4 - крепежный элемент; 5 - несущая конструкция покрытия; 6 - подкрановая балка; 7 - колонна; 8 - гидроизоляция; 9 - подсыпка; 10 - ригель; 11 - плита перекрытия

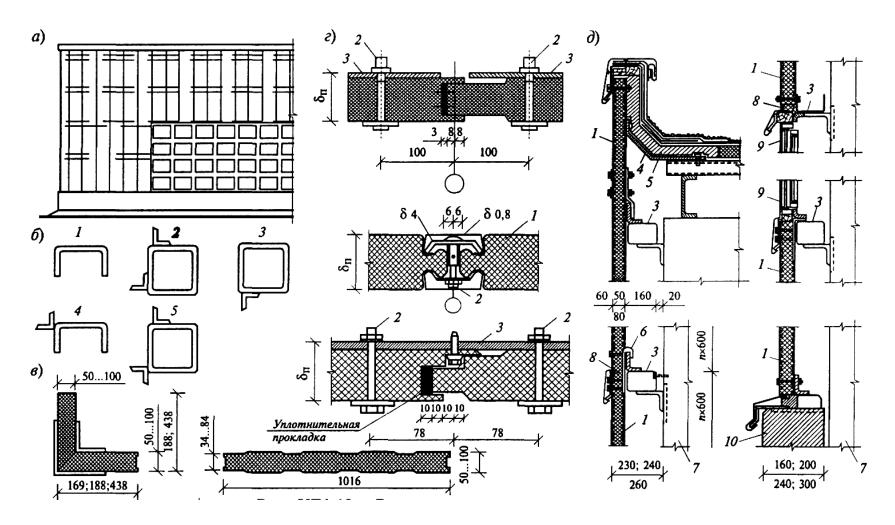


Рисунок 4.14 - Стены из металлических панелей:

а - фрагмент фасада; б - сечения ригелей (рядового 1, опорного надоконного 2, опорного подоконного 3, стыкового 4 и цокольного 3); в - угловая и рядовая панели; г - соединения панелей (в шпунт симметрично по толщине панели; с кромками в виде выступов-кулачков; с соединением в шпунт несимметрично по толщине панели); д - детали стены; 1 - панель; 2 - болт М8; 3 - ригель; 4 - листовая сталь; 5 - несгораемый утеплитель; 6 - накладки для навески из полосы 40х4; 7 - колонна; 8 - мастика из пенополиуретана; 9 – оконные переплеты; 10 - легкобетонная панель

Рисунок 4.15 — Стена из асбестоцементных волнистых листов а — поперечный разрез; б — остекленный проем; в — крюк для крепления листов; г — примыкание листов в местах продольной и поперечной нахлестки; д — угол стены; е — деформационный шов; 1 — цоколь (из кирпича или панелей); 2 — листы наружной обшивки; 3 — угловая деталь; 4 — фасонная деталь; 5 — крепежные детали; 6 — покрытие; 7 — ригели фахверка; 8 — оконная панель; 9 — крюк; 10 — стекло; 12 — мягкая прокладка; 13 — штампованная шайба; 14 — гайка; 15 — лотковая деталь

Панели закрепляют (рисунок 4.12, б) болтом с пластинкой при трехслойных панелях, анкером с пластинкой при шаге колонн 6 м, «сцепом» из двух уголков при шаге колонн 12 м, крюком со скобой (скрытый тип крепления) при улучшенной отделке интерьера.

При влажности воздуха в помещении более 60% или агрессивной среде предусматривают антикоррозионную защиту панелей и креплений. Внутренние поверхности стен окрашивают лакокрасочными составами и напыляют слой цинка на металлические крепления и закладные детали.

4.6 Облегченные конструкции стен из профилированного листа

Стены из металлических листов с эффективным утеплителем устраивают в одноэтажных промышленных зданиях при влажности воздуха в помещении до 60%. Цоколь таких стен выполняют из легкобетонных панелей или кирпича. Вышележащие участки стен, выполненные из профилированного листа, закрепляют к горизонтальным ригелям стенового фахверка.

По конструктивному решению металлические стены различают:

- послойно собираемые из стальных листов и плит утеплителя;
- монтируемые из укрупненных панелей, изготовленных на строительной площадке;
- монтируемые из панелей заводского изготовления.

Стины полистовой сборки (рисунок 4.14) состоят из горизонтальных ригелей, общивки из профилированных листов и пенополистирольных плит утеплителя. При возведении стен вначале устанавливают внутреннюю общивку, затем теплоизоляцию и наружную общивку. К ригелям стенового фахверка общивка закрепляется самонарезающими болтами. Профилированные листы общивки соединяют внахлестку и закрепляют комбинированными заклепками.

Укрупненные панели стен (рисунок 4.14, г) изготовляют на строительной площадке. К стальной раме из продольных и поперечных элементов прикрепляют внутреннюю обшивку, детали крепления, горизонтальные уголки. В два слоя укладывают плиты утеплителя и закрепляют наружную обшивку. Изготовленные панели устанавливают на цоколь либо на стальные опорные консоли, приваренные к колоннам, и закрепляют их болтами с крепежными накладками. Вертикальные швы заполняют утепляющей прокладкой и закрывают нащельником.

Стинь из трехслойных панелей заводского изготовления (рисунок 4.14, б) усиливают ригелями фахверка, закрепленного на опорных консолях колонн. Панели (рисунок 4.14, в) изготовляются шириной 1 - 1,5 м и длиной от 2,4 до 12 м. Они состоят из стальной обшивки, заполненной вспененным пенополиуретаном.

Панели устанавливают вертикально и закрепляют к ригелям фахверка (рисунок 4.14, д) болтами с накладными крюками. Вертикальнее стыки панелей соединяются вшпунт или закрываются с двух сторон нащельником. В

горизонтальный стык укладывают упругую прокладку, герметизируют шов мастикой и закрывают фартуком из оцинкованной стали.

Парапеты, обрамления углов, проемов и другие элементы стен накрывают погонажными элементами, закрепляя их самонарезающими болтами к элементам каркаса и комбинированными заклепками к наружной обшивке.

От коррозии металлические стены защищают оцинкованными иля полимерными покрытиями.

4.7 Стеновые ограждения из листовых материалов

Стены асбестоцементных листов (рисунок 4.15) ИЗ волнистых избыточным устраивают в неотапливаемых зданиях и в цехах стены тепловыделениями. Нижняя часть высоту 1,8-3,6 на подверженная увлажнению и механическим воздействиям, устраивается из кирпича или железобетонных панелей.

Асбестоцементные листы навешивают на ригели стенового фахверка. Их устанавливают в нахлестку в горизонтальном направлении на ширину одной волны, а в вертикальном на 100 мм. В местах пересечения продольной и поперечной нахлестки углы двух сходящихся листов срезают.

Листы к ригелям фахверка закрепляют крюками с нарезкой для болтов. Водонепроницаемость в местах крепления обеспечиваются установкой штампованных шайб с упругой прокладкой. Оцинковка стальных деталей (креплений) защищает их коррозии.

Места примыкания к оконным проемам, углы стен и деформационные швы обрамляются листами специального профиля.

Стены неотапливаемых зданий выполняются также из листов волнистого металла и стеклопластика.

Конструктивное решение таких стен аналогично ограждениям из волнистых асбестопементных листов.

5 ОКНА, ДВЕРИ, ВОРОТА

5.1 Типы светопрозрачных ограждений. Заполнение оконных проемов. Способы навески перелетов.

Светопрозрачные ограждения в стенах промышленных зданий имеют вид окон, лент и витражей. Их подразделяют:

- 1) По материалу заполнения (из обычного стекла или стеклопластика, из специального стекла профильного, солнцезащитного, светонаправленного и др.; из стеклоблоков и стеклопакетов двух стекол, склеенных по контру с герметически замкнутой воздушной прослойкой).
- 2) По числу рядов остекления (одинарное или двойное).
- 3) По конструкции заполнения (с переплетами и без переплетов).