2. Скалярное, векторное и смешанное произведения векторов, их вычисление и приложения

Определение. Скалярным произведением двух векторов \mathbf{a} и \mathbf{b} называется число, обозночаемое $\mathbf{c} = \mathbf{a} \cdot \mathbf{b}$ и равное произведению модулей данных векторов на косинус угла между ними:

$$a \cdot b = |a| |b| \cos (a^b)$$
, где (a^b)

обозначает меньший угол между направлениями векторов **a** и **b**. Отметим, что всегда $(0 \le a^b \le \pi)$.

Перечислим основные свойства скалярного произведения векторов:

- 1. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$;
- 2. $(\lambda \mathbf{a}) \cdot \mathbf{b} = \cdot (\lambda \mathbf{b}) = \lambda (\mathbf{a} \cdot \mathbf{b});$
- 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$;
- 4. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| \pi p_{\mathbf{a}} \mathbf{b} = |\mathbf{b}| \pi p_{\mathbf{b}} |\mathbf{a}|$;
- 5. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$;
- 6. **a** ·**b** = **0**, если **a** \perp **b**.

Если $\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2),$ то в базисе $(\mathbf{i}, \mathbf{j}, \mathbf{k})$:

$$\mathbf{a} \cdot \mathbf{b} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
, $|\mathbf{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}$, $|\mathbf{b}| = \sqrt{x_2^2 + y_2^2 + z_2^2}$.

Обозначим через α , β , γ углы, которые образуют вектор **a** (x_1, y_1, z_1) с осями координат O_x , O_y , O_z соответственно (или, что то же самое, с векторами **i**, **j**, **k**). Тогда справедливы следующие формулы:

$$\cos \alpha = \mathbf{a} \cdot \mathbf{i} / |\mathbf{a}| = x_1 / (\sqrt{x_1^2 + y_1^2 + z_1^2}), \quad \cos \beta = \mathbf{a} \cdot \mathbf{j} / |\mathbf{a}| = y_1 / |\mathbf{a}|,$$

$$\cos \gamma = \mathbf{a} \cdot \mathbf{k} / |\mathbf{a}| = z_1 / |\mathbf{a}|, \quad \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

Величины Cos α , Cos β , Cos γ называются направляющими косинусами вектора \mathbf{a} .

Работа A силы **F**, произведенная этой силой при перемещении тела на пути |S|, определяемой вектором **s**, вычисляется по формуле $A=\mathbf{F}\cdot\mathbf{S}=|\mathbf{F}|\ |\mathbf{S}|\cdot\mathbf{Cos}(\mathbf{F}^{\mathbf{s}}).$

<u>Пример.</u> Вычислить работу равнодействующей **F** сил **F**₁ = (3, -4, 5), **F**₂ = (2, 1, -4), **F**₃ = (-1, 6, 2), приложенных к материальной точке, которая под их действием перемещается прямолинейно из точки $M_1(4, 2, -3)$ в точку $M_2(7, 4, 1)$.

Решение. Так как
$$F=F_1+F_2+F_3$$
, $F=(4, 3, 3)$, $M_1M_2=S=(3, 2, 4)$, то $A=F \cdot S=4*3+3*2+3*4=30$.

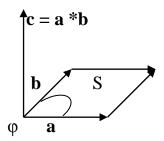
Упорядоченная тройка некомпланарных векторов **a, b, c** с общим началом в точке О называется правой, если кратчайший поворот от вектора **a** к вектору **b** наблюдается из конца вектора **c** происходящим против движения часовой стрелки. В противном случае данная тройка называется левой (Рис.4).

а Правый базис **а** Левый базис

Рис. 4

Векторным произведением векторов \mathbf{a} и \mathbf{b} называется вектор \mathbf{c} , обозначаемый $\mathbf{c} = \mathbf{a} * \mathbf{b}$, который удовлетворяет следующим трем условиям:

- 1. $|c| = |a| |b| Sin (a^b)$;
- 2. $\mathbf{c}^{\perp}\mathbf{a}, \mathbf{c}^{\perp}\mathbf{b};$
- 3. тройка **a, b, c** правая. Перечислим основные свойства векторного произведения векторов:
- 1. a *b = -(b*a);
- 2. $(\lambda a)*b = \lambda (a *b) = a *(\lambda b);$
- 3. a *(b+c) = a *b+ a *c;
- 4. $\mathbf{a} * \mathbf{b} = \mathbf{0}$, если $\mathbf{a} \parallel \mathbf{b}$;
- 5. $|\mathbf{a} * \mathbf{b}| = S$, где S площадь параллелограмма, построенного на векторах \mathbf{a} и \mathbf{b} , имеющих общее начало в точке φ . (см. рис.)



Если $\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2),$ то векторное произведение $\mathbf{a} * \mathbf{b}$ выражается через координаты данных векторов \mathbf{a} и \mathbf{b} , следующим образом:

$$\mathbf{a}^*\mathbf{b} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_1 & y_1 & z_1 \end{bmatrix}$$

Определение. Смешанным произведением векторов a, b и c называется число (a * b) c.

Перечислим основные свойства смешанного произведения векторов:

- 1. $(a*b)\cdot c = a\cdot (b*c)$, поэтому смешанное произведение можно обозначить проще $abc = (a*b)\cdot c$;
- 2. abc = bca = cab = -bac = -cba = -acb;
- 3. геометрический смысл смешанного произведения векторов в следующем: $abc = \pm V$, где V объем параллелепипеда, построенного на перемножаемых векторах, взятый со знаком «+» плюс, если

тройка векторов a, b, c — правая, или со знаком «-» минус, если она левая.

4. **abc** = 0, если **a**, **b**, **c** компланарны.

Если $\mathbf{a} = (x_1, y_1, z_1), \mathbf{b} = (x_2, y_2, z_2), \mathbf{c} = (x_3, y_3, z_3),$ то

$$\mathbf{abc} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}$$

<u>Пример.</u> Даны векторы $\mathbf{a} = (1, 3, 1), \mathbf{b} = (-2, 4, -1), \mathbf{c} = (2, 4, -6).$ Требуется установить, компланарны ли данные векторы, в случае их некомпланарности выяснить, какую тройку (правую или левую) они образуют, и вычислить объем построенного на параллелипипеда.

Решение: Вычислим

$$\begin{vmatrix} \mathbf{a} & \mathbf{b} \mathbf{c} = \begin{vmatrix} 1 & 3 & 1 \\ -2 & 4 & -1 \\ 2 & 4 & -6 \end{vmatrix} = -78 \neq 0.$$

из значения смешанного произведения следует, что векторы некомпланарны, образуют левую тройку и V = 78.

<u>Пример</u>. Даны векторы $\mathbf{a} = \lambda \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 4\mathbf{i} + \lambda \mathbf{j} - 4\mathbf{k}$. При каком значении λ эти векторы перпендикулярны?

Решение:

Находим скалярное произведение этих векторов $\mathbf{a} \cdot \mathbf{b} = 4\lambda + 2\lambda - 12$; так как $\mathbf{a} \perp \mathbf{b}$, то $\mathbf{a} \cdot \mathbf{b} = 0$. отсюда $4\lambda + 2\lambda - 12 = 0$; $6\lambda = 12$; $\lambda = 2$.

<u>Пример</u>. Определить угол между векторами $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = 6\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$.

Решение:

Так как
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\mathbf{a} \cdot \mathbf{b}) = |\mathbf{a}| |\mathbf{b}| \cos\varphi$$
, то $\cos\varphi = \mathbf{a} \cdot \mathbf{b}/|\mathbf{a}| |\mathbf{b}|$, $\mathbf{a} \cdot \mathbf{b} = 6 + 8 - 6 = 8$. $|\mathbf{a}| = \sqrt{1 + 4 + 9} = \sqrt{14}$, $|\mathbf{b}| = \sqrt{36 + 16 + 4} = \sqrt{56} = 2\sqrt{14}$, $\cos\varphi = 8/\sqrt{14 \cdot 2\sqrt{14}} = 2/7$, $\varphi = \arccos 2/7$.

<u>Пример.</u> Вычислить площадь параллелограмма, построенного на векторах $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$, $\mathbf{b} = \mathbf{i} - 4\mathbf{j}$. Здесь \mathbf{i} (1, 0), \mathbf{j} (0, 1)- единичные векторы, взаимно перпендикулярны.

Решение:

$$\mathbf{a}^*\mathbf{b} = (2\mathbf{i} + 3\mathbf{j})^*(\mathbf{i} - 4\mathbf{j}) = 2\mathbf{i}^*\mathbf{i} + 3\mathbf{j}^*\mathbf{i} - 8\mathbf{i}^*\mathbf{j} - 12\mathbf{j}^*\mathbf{j} = -3\mathbf{i}^*\mathbf{j} - 8\mathbf{i}^*\mathbf{j} = -11\mathbf{i}^*\mathbf{j} = \mathbf{c};$$

Snap. = $|\mathbf{c}| = 11|\mathbf{i}^*\mathbf{j}| = 11^*1^*1\sin\pi/2 = 11.$

<u>Пример.</u> Заданы векторы $\mathbf{a} = (0, 1, 0)$ және $\mathbf{b} = (2, -1, 3)$. Найти координаты векторного произведения этих векторов и длину.

Решение:

0 1 0

$$\mathbf{a} * \mathbf{b} =$$
 = 3**i** +0+0-2**k**-0-0 = 3**i** -2**k** = **c**

$$\mathbf{c}(3, 0, -2), |\mathbf{c}| = |\mathbf{a} * \mathbf{b}| = \sqrt{9 + 0 + 4} = \sqrt{13}.$$

<u>Пример.</u> Показать, что векторы $\mathbf{a} = 2 \mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{c} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ компланарны.

Решение:

Если векторы \mathbf{a} , \mathbf{b} , \mathbf{c} компланарны, то \mathbf{a} $\mathbf{b}\mathbf{c} = 0$.

a bc =
$$\begin{bmatrix} 2 & 5 & 7 \\ 1 & 1 & -1 & = 4+14-5-7+4-10 & = 0. \\ 1 & 2 & 2 & & \end{bmatrix}$$

Векторы а, b, с компланарны.

Решить:

- 1.Заданы векторы **a** (-1, 2, 0) и **j** (0, 1, 0). Вычислить: Cos (**a^j**). (Ответ: $2/\sqrt{5}$).
- 2.Векторы **a** и **b** взаимно перпендикулярны, $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$. Вычислить: $|\mathbf{a}\mathbf{b}|$; $|(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathbf{b})|$; $|(3\mathbf{a}-\mathbf{b})(\mathbf{a}-2\mathbf{b})|$. (Ответ: 12; 24; 60).
- 3.Вычислить площадь треугольника ABC с вершинами A(1, 1, 1), B(2, 3, 4), C(4, 3, 2). (Ответ: $2\sqrt{6}$).
- 4.Дано $|\mathbf{a}| = 10$, $|\mathbf{b}| = 2$, $\mathbf{a} \cdot \mathbf{b} = 12$. Вычислить: $|\mathbf{a}\mathbf{b}|$. (Ответ: 16).
- 5.Вычислить работу силы $\mathbf{F} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$ при перемещении материальной точкой из положения A (-1, 2, 0) в положение B (2, 1, 3). (Ответ: 4).
- 6.Вектор **x** перпендикулярен векторам $\mathbf{a_1}(2, 3, -1)$ и $\mathbf{a_2}(1, -2, 3)$ и удовлетворяет условию $\mathbf{x}(2\mathbf{i} \mathbf{j} + \mathbf{k}) = -6$. Найти координаты \mathbf{x} . (Ответ: $\mathbf{x}(-3, 3, 3)$).
- 7.Векторы $\mathbf{a_1}$, $\mathbf{a_2}$, $\mathbf{a_3}$ образуют правую тройку, взаимно перпендикулярны и $|\mathbf{a_1}|$ |=4, $|\mathbf{a_2}|=2$, $|\mathbf{a_3}|=3$. Вычислить $\mathbf{a_1}$ $\mathbf{a_2}$ $\mathbf{a_3}$. (Ответ: 24).
- 8.Заданы векторы \mathbf{a} (0, 3, 4), \mathbf{b} (2, 1, 3) и угол $\mathbf{a}^{\wedge} \mathbf{b} = \varphi = \pi/4$. Вычислить пр $_{\mathbf{b}}\mathbf{a}$. (Ответ: $5\sqrt{2}/2$).