Производная функции

7.2.1 Табличное дифференцирование

Пусть u=u(x), v=v(x) - функции от x , а C , a , α - константы. Тогда

1.
$$x_x' = 1$$

$$2. \left(u^{\alpha}\right)' = \alpha \cdot u^{\alpha - 1} \cdot u'$$

$$3. \left(\sin u\right)' = \cos u \cdot u'$$

$$4. (\cos u)' = -\sin u \cdot u'$$

$$5. (tg \ u)' = \frac{1}{\cos^2 u} \cdot u'$$

6.
$$(ctg\ u)' = -\frac{1}{\sin^2 u} \cdot u'$$

7.
$$(\arcsin u)' = \frac{1}{\sqrt{1-u^2}} \cdot u'$$

8.
$$(\arccos u)' = -\frac{1}{\sqrt{1-u^2}} \cdot u'$$

9.
$$(arctg \ u)' = \frac{1}{1+u^2} \cdot u'$$

$$10.(arcctg\ u)' = -\frac{1}{1+u^2} \cdot u'$$

11.
$$(a^u)' = a^u \ln a \cdot u' \Longrightarrow (e^u)' = e^u \cdot u'$$

12.
$$(\log u)' = \frac{1}{u \ln a} \cdot u' \Longrightarrow (\ln u)' = \frac{1}{u} \cdot u'$$

13.
$$(u^{v})' = v \cdot u^{v-1} \cdot u' + u^{v} \ln u \cdot v'$$

1. Найти производные следующих функций:

a)
$$y = 3x^3 5\sqrt[3]{x^5} - 4/x^3$$
;

B)
$$y = \sqrt{(x^3 + 1)/(x^3 - 1)}$$
.

$$\Gamma$$
) $y = \sqrt[7]{x^5} - 2/x^4 + 7x^6$;

д)
$$y = (x^9 + 1)\cos 5x$$
;

e)
$$y = ((x^4 + 1)/(x^4 - 1))^3$$
.

ж)
$$y = 4\sqrt{x} + 4/\sqrt{x} + 3x^2$$
;

3)
$$y = x^3 t g x \cdot e^{2x}$$
;

$$y = (\sin^2 x)/(x^3 + 1).$$

2.Записать уравнения касательной и нормали к кривой $y = \ln(x^2 - 4x + 4)$ в точке $x_0 = 1$. (Ответ: 2x + y - 2 = 0; x - 2y - 1 = 0.)

3. Воспользовавшись определением производной (см. Формулу (2)), найти производную функции y = (3x-1)/(2x+5). (Ответ: $y' = 17/(2x+5)^2$.)

4. Расстояние, пройденное материальной точкой за время t c, $s = \frac{1}{4}t^4 - \frac{1}{3}t^3 + 2t + 1$ (s — в метрах). Найти скорость движения данной точки в

моменты времени t = 0; 1; 2 с. (Ответ: 2 м/с; 2 м/с; 6 м/с.)

5. Найти производные следующих функций.

B)
$$y = (2^{\cos 3x} + \sin 3x)^3$$
; Γ $y = x \cos^2 x \cdot \ell^{x^2}$.

д)
$$y = x^3 e^{tg^3 x}$$
; e) $y = (\sin^3 x + \cos^3 2x)^2$;
ж) $y = \ln(x^4 - \sin^3 x)$; 3) $y = x \sin 7x \cdot tg^2 x$.

и)
$$y = xctg^2 5x$$
;
 $y = (x^3 + tg^3 2x)^2$;
 $y = \sin(x^5 - tg^2 x)$;
 $y = \sin(x^5 - tg^2 x)$;

a)
$$y = 3^{x^2} - tg^4 2x$$
;
b) $y = \lg^4(x^5 - \sin^5 2x)$;
6) $y = x^3 tg^3 x$;
6) $y = arctg \sqrt{1 + e^{-x^3}}$.

7. Найти производные следующих функций:

8. Найти производные функций y, заданных неявно следующими уравнениями:

a)
$$e^{xy} - x^3 - y^3 = 3$$
; б) $xy - arctg \frac{x}{y} = 3$; в) $\sqrt[3]{x} + \sqrt[3]{y} = a$.
(Ответ: a) $y' = (3x^2 - \ell^{xy}y)/(-3y^2 + \ell^{xy}x)$; б) $y' = -(x^2y + y^3 - y)/(x^3 + xy^2 + x)$; в) $y = -\sqrt[3]{(y/x)^2}$.)

Найти y' из уравнения:

568.
$$x^2 + y^2 - xy = 0$$
; **576.** $x = y + \operatorname{arctg} y$; **569.** $x^2 + xy + y^2 = 6$; **577.** $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$; **578.** $x^3 + y^3 - 3axy = 0$; **571.** $y^2 = 2px$; **572.** $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$; **580.** $e^{xy} - x^2 + y^3 = 0$; **573.** $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$; **581.** $\operatorname{arctg} \frac{y}{x} = \frac{1}{2} \ln(x^2 + y^2)$; **582.** $\operatorname{arctg} y = x + y$; **583.** $x^2 = \frac{y - x}{x + 2y}$.