Отчет

за первый квартал 2024 года по реализации проекта «Практикоориентированная модель обучения»

Первый квартал 2024 года охарактеризовался подготовительным этапом к реализации в пилотном режиме 12 стандартов Всемирной инициативы CDIO на базе образовательной программы «Механика и металлообработка».

Как известно, **CDIO** - это инициатива, в соответствии с которой в основе образовательного процесса заложен механизм: Придумывания (**Conceive**)- Разработки (**Design**)- Внедрения (**Implement**) - Управления (**Operate**) систем и продуктов.

Основными признаками CDIO являются следующие:

- Учебная программа состоит из взаимно поддерживаемых дисциплин, связанных навыками CDIO
 - Принцип изучения дисциплины проектное обучение
- Обучаясь профессиональным навыкам, студенты получают навыки работы в команде и навыки общения.
 - Активное обучение

Основными элементами CDIO являются силлабус и стандарты CDIO (рисунок 1).

Рисунок 1 – Основные элементы CDIO

Инициатива CDIO представлена 12 стандартами (таблица 1).

Таблица 1 – Классификация стандартов CDIO

Наименование стандартов	Наименование группы		
Стандарт 1 - Контекст инженерного	Учебный план		
образования			
Стандарт 2 - Результаты обучения			
Стандарт 3 - Интегрированный			
учебный план			
Стандарт 4 - Введение в инженерную			
деятельность			
Стандарт 5 - Опыт ведения проектно-			
внедренческой деятельности			
Стандарт 6 - Рабочее пространство	Среда для обучения		
для инженерной деятельности			
Стандарт 7 - Интегрированное	Обучение и оценка знаний		
обучение			
Стандарт 8 - Активные методы			
обучения			
Стандарт 11 - Оценка обучения			
Стандарт 9 - Совершенствование	Профессиональное развитие		
CDIO-компетенций преподавателей			
Стандарт 10 - Совершенствование			
педагогических компетенций			
преподавателей			
Стандарт 12 - Оценка программы	Постоянное улучшение		

В соответствии со стандартом 1 «Контекст инженерного образования», определены потребности предприятий машиностроительной отрасли, которые могут быть использованы в качестве тематик для реализации проектного обучения. Среди перечня потребностей можно выделить следующие:

- совершенствование технологического процесса изготовления деталей;
- модернизация конструкций машиностроительных изделий;
- проектирование механосборочных цехов;
- разработка энергоэффективных технологических машин;
- повышение производительности труда на предприятиях.

Следует отметить, что данные тематики относятся к 7, 9 и 12 целям устойчивого развития (рисунок 2).

Рисунок 2 – Цели устойчивого развития

В соответствии со стандартом 2 «Результаты обучения», внесены изменения в силлабус, а именно в подраздел 2.1 Тематический план раздела 2 — Содержание дисциплины (рисунок 3). Согласно силлабусу, преподаватели формируют учебный контент для достижения результатов CDIO, а также применяют активные методы обучения.

	2 СОДЕІ	РЖАНИЕ ДИСЦ	иплины			
	2.1 Тематический план					
Nº	Наименование темы и ее содержание	Трудоемкость в часах	Достигаемые результаты CDIO	Метод обучения	Ссылка на литературу	
\perp						
ито:	FO.					

Рисунок 3 - Силлабус

В соответствии со стандартом 3 «Интегрированная учебная программа» был усовершенствован учебный план образовательной программы «Механика и металлообработка» (рисунок 4):

• сформирован полный цикл базовых общеинженерных дисциплин: Теоретическая механика - Сопротивление материалов - Основы конструирования и детали машин - Гидравлика и гидропривод;

- сформирована четкая логическая связь между дисциплинами;
- по ключевым дисциплинам, в рамках которых будет реализовываться проектное обучение, предлагается назначить курсовой проект в качестве итогового контроля.

Рисунок 4 – Усовершенствованный учебный план

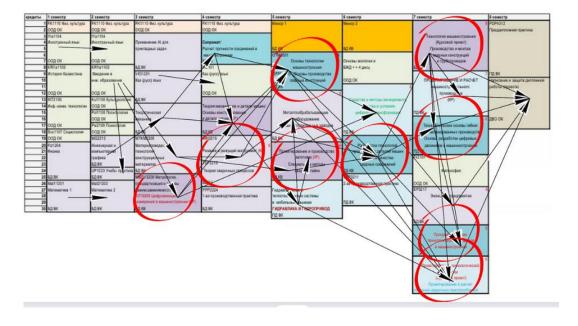


Рисунок 5 — Взаимосвязь дисциплин (красным отмечены ключевые дисциплины, в рамках которых будет реализовываться проектное обучение)

В соответствии со Стандартом 4 «Введение в инженерную деятельность», разработан силлабус по дисциплине «Введение в инженерное образование». Дисциплина «Введение в инженерное образование» представляет собой один из первых обязательных курсов, формирующая

•

основу для инженерной практики в рамках реализации Всемирной инициативы CDIO (Conceive – Design – Implement - Operate). В рамках дисциплины «Введение в инженерное образование» обучающимися будут охвачены этапы C-D.

Дисциплина включает в себя общее описание задач и обязанностей инженера, а также методы использования инженерных знаний для решения общественных проблем. Изучение дисциплины актуальных осуществляться посредством участия обучающихся в инженерной практике, решения задач и выполнения простых упражнений по проектированию как индивидуально, так и в группах. Кроме того, обучающиеся получат разработать возможность простой проект, который сформирует фундаментальные навыки в инженерной деятельности.

Структура дисциплины включает в себя 2 модуля: модуль «Business creation» и инженерный модуль (таблица 2). Дисциплина также формирует среду для развития личных знаний и межличностных навыков, необходимых для подготовки студентов к более сложному опыту создания продуктов, процессов, систем и услуг. Результатом дисциплины послужит приобретение важных инженерных навыков и основ предпринимательства для создания продуктов, процессов, систем и услуг.

Таблица 2 – Структура и содержание дисциплины «Введение в инженерное образование»

No	Наименование темы и ее	Трудоемкость	Достигаемые	Метод	Ссылка на		
	содержание	в часах	результаты	обучения	литературу		
			CDIO				
	Практические занятия						
	Модуль 1 – «Business creation»						
1	Инерция мышления. Решение противоречий.	3					
2	Дизайн-мышление.	3					
3	Общие принципы генерации идей.	3					
4	Расчеты по производству.	3					
	Построение бизнес-модели.						
5	Тестирование, проверка	3					
	жизнеспособности продукта.						
	Перекрестное оппонирование.						
	Модуль 2 – «Fundamentals of Engineering»						
6	Выбор (формулирование) темы	3					
	творческого проекта. Обоснование						
	ее актуальности. Формирование						
	творческих команд. Распределение						
	ролей в команде.						
7	Информационное погружение.	3					
	Сбор информации о теме						
	творческого проекта. Проведение						

No	Наименование темы и ее содержание	Трудоемкость в часах	Достигаемые результаты CDIO	Метод обучения	Ссылка на литературу		
	предварительных исследований. Определение недостатков объекта разработки.						
8	Планирование творческого проекта.	3					
10	Разработка эскиза	3					
11	Конструкторская разработка проекта	3					
12	Конструкторская разработка проекта	3					
13	Конструкторская разработка проекта	3					
14	Расчет затрат на реализацию проекта и его влияние на экологию.	3					
15	Презентация проектов.	45					
И	ИТОГО						

В соответствии со стандартом 5 «Опыт ведения проектновнедренческой деятельности» сформированы темы проектов, которые будут реализовываться в рамках проектного обучения.

Рисунок 6 – Темы проектов

В соответствии со стандартом 6 «Рабочее пространство для инженерной деятельности» подготовлен проект планировки мастерской для реализации проектов CDIO на базе Центра компетенций в области машиностроения (рисунок 7).

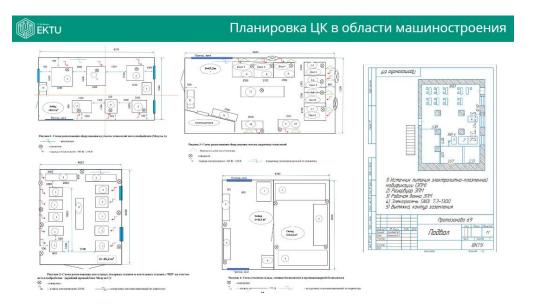


Рисунок 7 – Планировка ЦК в области машиностроения

В рамках стандарта 7 «Интегрированное обучение» и стандарта 8 «Активное обучение» сотрудниками Центра образовательных технологий проведен воркшоп для деканов, заместителей деканов, руководителей ОП и преподавателей.

Рисунок 8 – Проведение воркшопа по разъяснению стандартов 7 и 8.

Руководитель Центра образовательных технологий Жангербаева А.В. выступила с презентацией, в которой рассказала о передовых инновационных образовательных технологиях и инструментах, которые могут быть использованы для эффективного внедрения СDIО в учебный процесс. Презентация была насыщена примерами успешного применения новейших технологий в инженерном образовании. Одним из таких примеров было использование онлайн и облачных платформ для коллективной работы над проектами. Такие платформы обеспечивают возможность удаленного сотрудничества студентов над проектами, что особенно актуально в современных условиях, когда командная работа часто ведется на расстоянии.

Кроме того, в ходе воркшопа были представлены различные аспекты электронного, мобильного, гибридного и смешанного обучения, а также применение облачных технологий и геймификации в контексте применения стандартов СDIO. Представленные примеры показали, как инновационные образовательные технологии могут эффективно интегрироваться в учебный процесс с использованием принципов СDIO. В конце участникам дали небольшие задачи для закрепления материала и проводились небольшие квизы.