Theory of probability and mathematical statistics

Beregovaya Olesya Anatolyevna

The instructor profile

Description: Probability theory and mathematical statistics is a branch of mathematics that studies methods of collecting, processing and using statistical data to obtain scientifically based conclusions and make decisions based on them. The content of the discipline covers the following issues: Statistical data processing, Point and interval estimates of numerical characteristics, Statistical hypothesis testing, Correlation and regression analysis, Statistical processing of experimental data.

Amount of credits: 5

Пререквизиты:

  • Mathematics 1

Course Workload:

Types of classes hours
Lectures 15
Practical works 30
Laboratory works
SAWTG (Student Autonomous Work under Teacher Guidance) 30
SAW (Student autonomous work) 75
Form of final control Exam
Final assessment method

Component: Component by selection

Cycle: Base disciplines

Goal
  • изложение основных понятий и методов курса высшей математики, являющихся основной базой для освоения дисциплин, использующих математические модели, формирование у студентов теоретических знаний и практических навыков применения математических методов при постановке и решении прикладных задач
Objective
  • Изучение основных понятий дисциплины» теория вероятностей и математическая статистика " и ее применение в различных областях; Овладение основными законами, теориями дисциплины " теория вероятностей и математическая статистика» методами решения с использованием конкретных задач; Умение применять полученные методы по дисциплине " Теория вероятностей и математическая статистика» ; развитие математической интуиции; воспитание математической культуры; формирование научного мировоззрения и логического мышления.
Learning outcome: knowledge and understanding
  • Знает формулы и свойства, теоремы, основные определения по дисциплине «Теория вероятностей и математическая статистика»
  • Точечную оценку параметров и поределение доверительного интервала, основных методов статистической обработки
Learning outcome: applying knowledge and understanding
  • Знания, полученные при изучении дисциплины «Теория вероятностей и математическая статистика» применяет при решении прикладных задач в области профилирующих дисциплин, в статистических обработок данных математических моделей различных задач.
Learning outcome: formation of judgments
  • Анализирует эффективность полученной модели, применяя математические методы и имеет представление о математических моделях и методах решения прикладных задач из различных областей естествознания.
Learning outcome: communicative abilities
  • Быть способным при решении математическими методами прикладных задач в команде, корректно отстаивать свою точку зрения, предлагать новые решения
Learning outcome: learning skills or learning abilities
  • Способен корректно представить знания в математической форме с использованием элементов теории вероятностей и математической статистики.
Teaching methods

Информационно – коммуникационная технология; Технология развития критического мышления; Проектная технология; Технология интегрированного обучения; Технологии уровневой дифференциации; Групповые технологии; Традиционные технологии(лекционное, практическое занятия)

Topics of lectures
  • Алгебра событий
  • Элементы комбинаторики
  • Теорема сложения вероятностей
  • Формула полной вероятности
  • Испытания с повторениями
  • Случайные величины
  • Числовые характеристики дискретной случайной величины
  • Плотность распределения непрерывных случайных величин
  • Равномерное, нормальное, показательное распределение непрерывных случайных величин и их числовые характеристики
  • Начальные и центральные теоретические моменты случайных величин
  • Элементы математической статистики
  • Генеральная дисперсия
  • Интервальные оценки
  • Критерии и применение его для различных предполагаемых проверок
  • Определение параметров линейной и нелинейной регрессии методом наименьших квадратов
Key reading
  • Гмурман В.Е. Введение в теорию вероятностей и математическую статистику. – М.: Высшая школа, 2008.
  • Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 2008.
  • Вентцель Е.С. Теория вероятностей. – М.: Физматгиз, 2002.
  • Данко И.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. В 2-х частях. Ч.2. – М.: Мир и образование, 2005
  • Кибзун А.И. и др. Теория вероятностей и математическая статистика. Базовый курс с примерами и задачами. – М.: Физматлит, 2002.
  • Письменный Д.Т. Конспект лекций по теории вероятностей и математической статистике. – М.: Айрис-пресс, 2004.
  • Рябушко А.П., Бархатов В.В. и др. Индивидуальные задания по высшей математике. – Минск: Высшая школа, 2009. – Т. 4.
  • Тыныбекова С.Д., Рахметуллина Ж.Т., Конырханова А.А.Теория вероятностей и математическая статистика в вопросах и задачах. – Усть-Каменогорск: ВКГТУ, 2011.