Physics 1
Description: The course consists of several sections. The first section is devoted to the presentation of kinematics, dynamics of a material point and a solid body. The second section discusses the basics of molecular physics and thermodynamics. The third section studies electrostatics, direct current and electromagnetism. The characteristics of fields are considered; laws and phenomena confirming the unity of nature and the relationship of electric and magnetic fields.
Amount of credits: 6
Пререквизиты:
- Физика. Школьный курс
Course Workload:
Types of classes | hours |
---|---|
Lectures | 15 |
Practical works | 15 |
Laboratory works | 30 |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 90 |
Graded Credit | |
Form of final control | Graded Credit |
Final assessment method |
Component: University component
Cycle: Base disciplines
Goal
- The purpose of the discipline is to provide systematic knowledge in the discipline "physics"; to teach and teach physical phenomena and basic ideas; to master fundamental concepts, laws, modern classical physics theories and methods of Physical Research. Formation of a system of thinking in accordance with the scientific approach and modern physics.
Objective
- Tasks of the discipline: - Formation of knowledge about physical phenomena, concepts, laws, theories, methods, practical facts; - Formation of views that give a scientific picture of the world in accordance with the degree of development of modern science; - familiarization with the main directions of scientific and technical development using the laws of physics in industrial technology and technology; - mastering methods and methods of solving specific problems or problems in various fields of Physics;
Learning outcome: knowledge and understanding
- Students are able to master the basic physical phenomena and laws of classical and modern physics, methods of Physical Research
Learning outcome: applying knowledge and understanding
- Familiarization of students with measuring equipment, conducting experimental studies, processing the results of experiments and their analysis
Learning outcome: formation of judgments
- Formation of students ' scientific thinking and dialectical worldview, correct understanding of the boundaries of application of various physical concepts, laws, theories and the ability to assess the degree of accuracy of the results obtained by experimental or mathematical research methods
Learning outcome: communicative abilities
- ability to apply basic knowledge in professional activities; acquire theories and skills of practical work; analyze the results obtained, draw the necessary conclusions and formulate recommendations; present the results obtained in research in the form of reports
Learning outcome: learning skills or learning abilities
- Development of students ' creative thinking, skills of independent cognitive activity, modeling of physical conditions using a computer
Teaching methods
When conducting training sessions, it is planned to use the following educational technologies:: - interactive lecture (using the following active forms of training: executive (managed) discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - creating scenarios for the development of various situations based on the specified conditions; - information and communication (for example, lessons in a computer class using professional packages of application programs); - search and research (independent research activities of students in the educational process); - solving training problems.
Assessment of the student's knowledge
Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.
Period | Type of task | Total |
---|---|---|
1 rating | Colloquium | 0-100 |
Individual tasks | ||
Performing and protecting laboratory work | ||
Border control 1 | ||
Border control 2 | ||
Colloquium | ||
Individual tasks | ||
Performing and protecting laboratory work | ||
Total control | Graded Credit | 0-100 |
The evaluating policy of learning outcomes by work type
Type of task | 90-100 | 70-89 | 50-69 | 0-49 |
---|---|---|---|---|
Excellent | Good | Satisfactory | Unsatisfactory |
Evaluation form
The student's final grade in the course is calculated on a 100 point grading scale, it includes:
- 40% of the examination result;
- 60% of current control result.
The final grade is calculated by the formula:
FG = 0,6 | MT1+MT2 | +0,4E |
2 |
Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;
E is a digital equivalent of the exam grade.
Final alphabetical grade and its equivalent in points:
The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:
Alphabetical grade | Numerical value | Points (%) | Traditional grade |
---|---|---|---|
A | 4.0 | 95-100 | Excellent |
A- | 3.67 | 90-94 | |
B+ | 3.33 | 85-89 | Good |
B | 3.0 | 80-84 | |
B- | 2.67 | 75-79 | |
C+ | 2.33 | 70-74 | |
C | 2.0 | 65-69 | Satisfactory |
C- | 1.67 | 60-64 | |
D+ | 1.33 | 55-59 | |
D | 1.0 | 50-54 | |
FX | 0.5 | 25-49 | Unsatisfactory |
F | 0 | 0-24 |
Topics of lectures
- mechanical motion is the simplest form of motion of matter
- kinematics of rotational motion
- the concept of an absolute solid body
- conservation laws are a consequence of the symmetry of space and time
- general characteristics of harmonic vibrations
- ideal gas
- the average number of collisions and the average length of the free path of molecules
- internal energy of a thermodynamic system
- reversible and irreversible processes
- interaction of electric charges
- dielectrics in an electrostatic field
- general characteristics and conditions of existence of electric current
- the Basic Law of electromagnetic induction
- Maxwell's system of equations
Key reading
- 1. Савельев И.В. Курс общей физики.496с., т. 2 М. Наука. 1998. 2. Трофимова Т.И. Краткий курс физики: Учебное пособие для вузов. Изд, 2-е, испр.-352 с, М: Высшая Школа, 2002. 3. Детлаф А.А., Яворский Б.М. Курс физики: Учебкое пособие для втузов. Изд. 4-е, испр.-607 с. М.: Высшая школа, 1989. 4. Трофимова Т.И, Курс физики: Учебное пособие для инженерно-технических спеииальностей ВУЗов, Изд. 6-е/7-е - 542 с, М: Высшая Школа, 1999. 5. Грабовский Р.И. Курс физики: Учебник для ВУЗов. Изд. 6-е - 608 с. (Учебники для ВУЗов: Специальная литература), СПб:Лань, 2002. 6. Трофимова Т.И. Сборник задач по курсу физики для втузов: Учебное пособие для инженерно-технических специальностей высших учебных заведений. Изд. 3-е-384 с. М: Оникс 21 век/Мир и Образование, 2003. 7. Волькенштейн В.С. Сборник задач по общему курсу физики для студентов технических вузов. Изд. доп. перераб. 327 с. СПб: Спец.лит, 2002. 8. Иродов И.Е. Задачи по общей физике М: Наука, 1999. 9. Беликов Б. Решение задач по физике. - М.: Высшая школа, 1986. 10.Чертов А., Воробьёв А. Задачник по физике. - М.: Высшая школа, 1981.
Further reading
- 11. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекиии по физике. Т.5, Электричество и магнетизм. Мир.,М., 1977. 12. Парселл, Электричество и магнетизм. Беркелеевский курс физики, Том 2, перевод с англ.яз. Изд.Наука, физ.мат.лит., 1975. 13. Калашников С.Г. Электричество. Изд. Паука, М., 1975. 14. Матвеев А.Н. Электричество и магнетизм. - Электричество и магнетизм. - М.Высшая школа, 1983. 15. Сивухин Л.В. Общий курс физики, М-Наука, 1977-1986, Т. 1-5. 16. Козел С.М., Лейман В.Г.,Локшин Г.Р. и др. Сборник задач по обшему курсу физики: ч.2: Электричество и магнетизм, Оптика: Учебное пособие для вузов (под редакцией Овчинкина В.А.). Изд. 2-е, испр.-368 с(Физика). М: МФТИ, 2000.