Physics
Description: The discipline includes such systematically studied sections as mechanics, molecular physics, electricity and magnetism, optics, atomic physics and elementary particle physics, the knowledge gained in them helps students to further study general and special disciplines, apply the fundamental laws of physics, methods of Physical Research and achievements of physics in their professional activities.
Amount of credits: 6
Пререквизиты:
- Физика. Школьный курс
Course Workload:
Types of classes | hours |
---|---|
Lectures | 15 |
Practical works | 15 |
Laboratory works | 30 |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 90 |
Form of final control | Exam |
Final assessment method |
Component: University component
Cycle: Base disciplines
Goal
- Creating the basis for students to have a fairly broad theoretical training in the field of physics, allowing future engineers to navigate the flow of scientific and technical information and providing them with the opportunity to use new physical principles in the areas of technology in which they specialize. 2 students ' Assimilation of basic physical phenomena and laws of classical and modern physics, methods of physical research. 3 Formation of students ' scientific thinking and dialectical Outlook, correct understanding of the limits of applicability of various physical concepts, laws, theories, and the ability to assess the degree of reliability of results obtained using experimental or mathematical research methods. 4 Familiarizing students with measuring equipment, developing the ability to conduct experimental research, process the results of the experiment and analyze them. 5 Development of students ' creative thinking, skills of independent cognitive activity, ability to model physical situations using a computer.
Objective
- Knowledge of physical phenomena, concepts, laws, theories, methods, and practical facts; - formation of ideas that give the scientific appearance of the world in accordance with the degree of development of modern science; - familiarization with the main directions of scientific and technical progress with the application of the laws of physics in technology and engineering industry; - mastering methods and methods for solving specific problems or problems in various branches of physics; - familiarization with new modern scientific devices, the formation of physical perception skills
Learning outcome: knowledge and understanding
- Students learn the basic physical phenomena and laws of classical and modern physics, methods of physical research
Learning outcome: applying knowledge and understanding
- Familiarizing students with measuring equipment, developing the ability to conduct experimental research, process the results of the experiment and analyze them
Learning outcome: formation of judgments
- Formation of students ' scientific thinking and dialectical Outlook, correct understanding of the limits of applicability of various physical concepts, laws, theories, and the ability to assess the degree of reliability of results obtained using experimental or mathematical research methods
Learning outcome: communicative abilities
- Be able to organize their work, evaluate the results of their activities with a high degree of independence, possess skills of independent work; be able to apply basic knowledge in professional activities; possess theory and practical skills; analyze the results obtained, make the necessary conclusions and formulate proposals; present the results obtained in research in the form of reports
Learning outcome: learning skills or learning abilities
- Development of students ' creative thinking, skills of independent cognitive activity, ability to model physical situations using a computer
Teaching methods
When conducting training sessions, the following educational technologies are provided: - interactive lecture (using the following active forms of learning: guided discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - building scenarios for various situations based on the specified conditions; - information and communication technology (for example, classes in a computer class using professional software packages); - search and research (independent research activity of students in the learning process); - the solution of educational tasks.
Topics of lectures
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
Key reading
- 1. Алешкевич, В.А. Курс общей физики. Молекулярная физика / В.А. Алешкевич. - М.: Физматлит, 2016. - 312 c. 2. Бондарев, Б.В. Курс общей физики. В 3 кн. Кн. 2: Электромагнетизм, оптика, квантовая физика: Учебник / Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2015. - 441 c. 3. Бондарев, Б.В. Курс общей физики. Книга 2: Элетромагнетизм, оптика, квантовая физика: Учебник для бакалавров / Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2016. - 441 c. 4. Бондарев, Б.В. Курс общей физики. Книга 3: Термодинамика, статистическая физика, строение вещества: Учебник для бакалавров / Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2016. - 369 c. 5. Бондарев, Б.В. Курс общей физики. книга 1: механика: Учебник для бакалавров / Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2016. - 353 c. 6. Бондарев, Б.В. Курс общей физики. В 3 кн. Кн.1: Механика: Учебник / Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2015. - 353 c. 7. Бучаченко, А.Л. От квантовых струн до тайн мышления.: Экскурс по самым завораживающим вопросам физики, химии, биологии, математики / А.Л. Бучаченко. - М.: Ленанд, 2017. - 188 c. 8. Голоскоков, Д.П. Курс математической физики с использованием пакета Maple: Учебник / Д.П. Голоскоков. - СПб.: Лань, 2015. - 576 c. 9. Голоскоков, Д.П. Курс математической физики с использованием пакета Maple: Учебное пособие / Д.П. Голоскоков. - СПб.: Лань, 2015. - 576 c. 10. Детлаф, А.А. Курс физики: Учебное пособие / А.А. Детлаф. - М.: Academia, 2015. - 32 c.
Further reading
- 13. Зисман, Г.А. Курс общей физики: Учебное пособие. В 3-х тт. Т.2. Электричество и магнетизм / Г.А. Зисман, О.М. Тодес. - СПб.: Лань, 2019. - 360 c. 14. Зисман, Г.А. Курс общей физики: Учебное пособие. В 3-х тт. Т.1. Механика. Молекулярная физика. Колебания и волны / Г.А. Зисман, О.М. Тодес. - СПб.: Лань, 2019. - 340 c. 15. Иванов, С.В. Избранные главы физики: Магнетизм, магнитный резонанс, фазовые переходы. Курс лекций / С.В. Иванов, П.С. Мартышко. - М.: Ленанд, 2018. - 208 c. 16. Кабисов, К.С. Классическая и релятивистская механика в курсе общей физики: Основные положения теории и задачи / К.С. Кабисов, С.В. Копылов, А.Н. Артёмов. - М.: Ленанд, 2018. - 256 c. 17. Калашников, Н.П. Практикум по решению задач общего курса физики. Механика: Учебное пособие / Н.П. Калашников, Т.В. Котырло и др. - СПб.: Лань, 2018. - 292 c. 18. Канн, К.Б. Курс общей физики: Учебное пособие / К.Б. Канн. - М.: Инфра-М, 2019. - 768 c. 19. Кузнецов, С.И. Курс физики с примерами решения задач. Часть II. Электричество и магнетизм. Колебания и волны: Учебное пособие / С.И. Кузнецов. - СПб.: Лань, 2015. - 416 c. 20. Кузнецов, С.И. Курс физики с примерами решения задач. Часть III. Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц: Учебное пособие / С.И. Кузнецов. - СПб.: Лань, 2015. - 336 c. 21. Кузнецов, С.И. Курс физики с примерами решения задач. Ч. 2. Электричество и магнетизм. Колебания и волны / С.И. Кузнецов. - СПб.: Лань, 2015. - 416 c. 22. Кузнецов, С.И. Курс физики с примерами решения задач. Ч. 3. Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц. / С.И. Кузнецов. - СПб.: Лань, 2015. - 336 c.