Mathematics 3

Mukhamedova Raushan Orazgalievna

The instructor profile

Description: The discipline contains sections: theory of functions of complex variable, studying functions specified on the complex plane; Elements of operational calculus and its application to integration of ordinary linear differential equations and systems with constant coefficients; Fourier's series

Amount of credits: 5

Пререквизиты:

  • Mathematics 2
  • Математика. Школьный курс

Course Workload:

Types of classes hours
Lectures 15
Practical works 45
Laboratory works
SAWTG (Student Autonomous Work under Teacher Guidance) 15
SAW (Student autonomous work) 75
Form of final control Exam
Final assessment method A written exam

Component: University component

Cycle: Base disciplines

Goal
  • The purpose of teaching the discipline is to present the basic concepts and methods that are the main basis for mastering the disciplines that use mathematical models, the formation of students' theoretical knowledge, and the practical skills of applying mathematical methods in the formulation and solution of applied problems, as well to enable students to: • develop their mathematical knowledge and skills in a way which encourages confidence and provides satisfaction and enjoyment; • develop the ability to analyse problems logically; • recognise when and how a situation may be represented mathematically, identify and interpret relevant factors and select an appropriate mathematical method to solve the problem.
Objective
  • Задачи дисциплины состоят в том, чтобы дать студентам возможность: - развивать свои математические знания и навыки таким образом, чтобы они вселяли уверенность и обеспечивали удовлетворение и наслаждение;
  • формировать понимание математических принципов и понимание математики как логичного и последовательного предмета;
  • развивать способность логически анализировать проблемы;
  • распознавать, когда и как ситуация может быть представлена математически, идентифицировать и интерпретировать соответствующие факторы и выбрать подходящий математический метод для решения проблемы;
  • приобрести математическую подготовку, необходимую для дальнейшего изучения математики или смежных предметов.
Learning outcome: knowledge and understanding
  • Знает формулы и свойства, символики основных понятий комплексного анализа и теории операционного исчисления, а также методы решения прикладных задач технологических процессов с применением методов операционного исчисления.
Learning outcome: applying knowledge and understanding
  • Знания, полученные при изучении дисциплины успешно применяет при решении прикладных задач, в составлении математических моделей различных задач.
Learning outcome: formation of judgments
  • Имеет представление о математических моделях и методах решения прикладных задач из различных областей техники и технологии; аргументирует выбор математического метода с обоснованием.
Learning outcome: communicative abilities
  • Способен при решении математическими методами проблем в области техники в команде, корректно отстаивать свою точку зрения, предлагать новые решения. Умеет осуществлять систематизированный сбор научно-технической информации, анализ отечественного и зарубежного опыта по математике для исследования.
Learning outcome: learning skills or learning abilities
  • Способен корректно представить знания в математической форме с использованием элементов теории комплексного анализа, операционного исчисления.
  • Владеет аналитическим способам представления математической информации для создания математической модели прикладных задач.
Teaching methods

интерактивные технологии обучения;

компьютерные технологии обучения;

решение учебных задач;

самостоятельная исследовательская работа студентов во время учебного процесса.

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating ИДЗ 1 0-100
Самостоятельная работа 1
ИДЗ 2
Test 1
2  rating ИДЗ 3 0-100
Самостоятельная работа 2
ИДЗ 4
Контрольная работа 2
Total control Exam 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
Interview on control questions (colloquium) demonstrates systematic theoretical knowledge, masters terminology, logically and consistently explains the essence of phenomena and processes, makes reasoned conclusions and generalizations, gives examples, shows fluency in monologue speech and the ability to quickly respond to clarifying questions demonstrates strong theoretical knowledge, masters terminology, logically and consistently explains the essence of phenomena and processes, makes reasoned conclusions and generalizations, gives examples, shows fluency in monologue speech, but at the same time makes minor mistakes, which he corrects independently or with minor correction by the teacher demonstrates shallow theoretical knowledge, shows poorly formed skills in analyzing phenomena and processes, insufficient ability to draw reasoned conclusions and give examples, shows insufficient fluency in monologue speech, terminology, logic and consistency of presentation, makes mistakes that can only be corrected by correction by the teacher. demonstrates systematic theoretical knowledge, masters terminology, logically and consistently explains the essence of phenomena and processes, makes reasoned conclusions and generalizations, gives examples, shows fluency in monologue speech and the ability to quickly respond to clarifying questions
IH (individual homework) or written work/exam completed the practical work in full in compliance with the required sequence of actions; in the answer, correctly and accurately completes all records, tables, pictures, drawings, graphs, calculations; performs error analysis correctly. When answering questions, he correctly understands the essence of the question, gives an accurate definition and interpretation of basic concepts; accompanies the answer with new examples, knows how to apply knowledge in a new situation; can establish a connection between the material being studied and previously studied, as well as with the material acquired in the study of other disciplines. fulfilled the requirements for a “5” rating, but made 2-3 shortcomings. The student’s answer to the questions satisfies the basic requirements for answering 5, but is given without applying knowledge in a new situation, without using connections with previously studied material and material learned in the study of other disciplines; If one mistake or no more than two shortcomings are made, the student can correct them independently or with a little help from the teacher. did not complete the work completely, but not less than 50% of the volume of practical work, which allows you to obtain the correct results and conclusions; Errors were made during the work. When answering questions, the student correctly understands the essence of the question, but in the answer there are some problems in mastering the course questions that do not interfere with further mastery of the program material; no more than one gross error and two omissions were made. completed the practical work in full in compliance with the required sequence of actions; in the answer, correctly and accurately completes all records, tables, pictures, drawings, graphs, calculations; performs error analysis correctly. When answering questions, he correctly understands the essence of the question, gives an accurate definition and interpretation of basic concepts; accompanies the answer with new examples, knows how to apply knowledge in a new situation; can establish a connection between the material being studied and previously studied, as well as with the material acquired in the study of other disciplines.
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • Комплексные числа и действия над ними
  • Функции комплексного переменного
  • Основные элементарные функции комплексного переменного
  • Дифференцирование функций комплексного переменного
  • Интегрирование функций комплексного переменного
  • Интегральная формула Коши
  • Ряды в комплексной области
  • Нули функции
  • Вычеты функций
  • Приложение вычетов к вычислению определенных интегралов
  • Операционное исчисление
  • Свойства преобразования Лапласа
  • Обратное преобразование Лапласа
  • Операционный метод решения линейных дифференциальных уравнений
  • Операционный метод решения линейных дифференциальных систем
Key reading
  • Краснов М.Л. и др. Функции комплексного переменного. Операционное и счисление. Теория устойчивости. – М.: Наука, 2013.
  • Лунц Г.Л., Эльсгольц Л.Э. Функции комплексного переменного. – СПб.: Изд-во «Лань», 2012.
  • Пантелеев А.В., Якимова А.С. Теория функций комплексного переменного и операционное исчисление в примерах и задачах. – М.: Высшая школа, 2014.
  • Эйдерман В.Я. Основы теории функций комплексного переменного и операционного исчисления. – М.: Физматлит, 2013.
  • Ефимов А.В. и др. Сборник задач по математике для втузов. В 4-х частях. Ч.3. – М.: Физматлит, 2012.
Further reading
  • Мухамедова Р.О.,Тыныбекова С.Д., Специальные разделы математики. – Усть-Каменогорск: ВКГТУ, 2015.