Actual problems of modern physics
Description: This discipline allows you to acquire basic scientific and practical knowledge necessary to solve problems related to the problems of modern physics. Modern physics is a field of science devoted to the study of the fundamental laws of nature at the highest energy levels, small scales, and extreme conditions. The course includes areas such as quantum mechanics, relativity theory, elementary particles, cosmology and much more.
Amount of credits: 5
Пререквизиты:
- Selected chapters of modern physics
Course Workload:
Types of classes | hours |
---|---|
Lectures | 15 |
Practical works | 30 |
Laboratory works | |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 75 |
Form of final control | Exam |
Final assessment method |
Component: University component
Cycle: Base disciplines
Goal
- Conducting scientific research on the problems posed; formulating new tasks that arise in the course of scientific research; working with scientific literature using new information technologies, working on experimental physical installations; choosing the necessary research methods; analyzing the obtained physical information using modern computer technology.
Objective
- a) to acquaint students with the main stages of development of physical and mathematical education, the level of scientific knowledge; b)to interpret physics widely and deeply in the XXI century; c) to show a generalization of modern fundamental problems of natural science; d) to reveal the role of modern developed science in physics and civilizational science; e) to increase modern interests on a methodological basis to fundamental and applied Radiophysics, optometry, photon, optoinformatics; f) to expand terminological and linguistic competence.; g) description of the types of science and General laws of scientific theory that developed during the XX-XXI centuries; h) explanation of the problems of physics as a valuable source of cultural construction; i) introduction to the theory of pseudonymy.
Learning outcome: knowledge and understanding
- 1. Know modern computer modeling technologies for optimization of technological processes methods of engineering and scientific analysis corresponding to the world level
Learning outcome: applying knowledge and understanding
- 1. Readiness to independently acquire new knowledge and skills using information technologies and use them in practice, including in new areas of knowledge that are not directly related to the field of activity
Learning outcome: formation of judgments
- 1. Organize your work. independently evaluating the results of their activities, possession of skills of independent work, including in the field of scientific research.
Learning outcome: communicative abilities
- 1. Freely and adequately Express their thoughts during a conversation and understand the speech of the interlocutor.
Learning outcome: learning skills or learning abilities
- 1. Conduct scientific research, including the choice of a topic, its justification, determination of relevance, novelty and significance, organization of stages of research, registration of results. formulation of conclusions, conclusions and recommendations: use the acquired knowledge in educational and research activities in the specialty profile.
Teaching methods
1. Lecture-seminar-credit system 2. Research methods 3. Information and communication technologies
Topics of lectures
- Superconductivity at high and room temperatures
- Phase transitions of the second kind and related effects (cooling to ultra-low temperatures, Bose-Einstein condensate in gases, etc
- Surface physics
- Clusters
- Properties of matter in super-strong magnetic fields
- Nonlinear physics: turbulence, solitons, chaos, strange attractors
- Gravitational waves and their detection
- Cosmological problems
- The connection between cosmology and high energy physics
- Neutron stars and pulsars
- Experimental verification of the general theory of relativity
- Quasars and galactic nuclei
- Unified theory of weak and electromagnetic interactions
- Non-preservation of CP invariance
- Nonlinear phenomena in vacuum and super-strong electric fields
Key reading
- 1. Агацци Э. Почему у науки есть и этические измерения? // Вопросы философии. 2009. № 10. С. 97–104. 2. Бао О. Анализ понятия «культура инженерии» // Вопросы философии. 2007. № 5. С. 58–63. 3. Грин Б. Элегантная Вселенная: Суперструны, скрытые размерности и поиски окончательной тнории. М.: КомКнига, 2007. 288 с. 4. Данилов Ю.А. Прекрасный мир науки: Сб. / сост. А.Г. Шадтина. Под ред. В.И. Санюка, Д.И. Трубецкова. М.: Прогресс-Традиция, 2008. 384 с. 5. Драгунов В.П., Неизвестный И.Г., Гридчин В.А. Основы наноэлектроники: Учеб. пособие. М.: Университетская книга; Логос; Физматкнига, 2006. 496 с. 6. За «железным занавесом»: Мифы и реалии советской науки / Под ред. М. Хайнеманна, Э.И. Колчинского. СПб.: Дмитрий Буланин, 2002. 528 с. 7. Иваницкий Г.Р. Круговорот: Общество и наука. М.: Наука, 2005. 259 с. 8. Игнатов А.Н., Фадеева Н.Е., Савиных В.Л. Классическая электроника и наноэлектроника: Учеб. пособие. М.: Флинта; Наука, 2009. 728 с. 9. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: Наука, 1997. 285 с.
Further reading
- 7. Иваницкий Г.Р. Круговорот: Общество и наука. М.: Наука, 2005. 259 с. 8. Игнатов А.Н., Фадеева Н.Е., Савиных В.Л. Классическая электроника и наноэлектроника: Учеб. пособие. М.: Флинта; Наука, 2009. 728 с. 9. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М.: Наука, 1997. 285 с.