Electronic-Microscopic Analysis
Description: The principles of modern multi-lens electron microscope, aberration of electron optics, resolution and depth of focus and practical modes of operation are considered in the course of electron microscopy. The diffraction conditions of image formation, methods of indexing diffraction patterns, the principle of operation of a scanning electron microscope and methods of preparation of samples for electron microscopy are considered.
Amount of credits: 5
Пререквизиты:
- Computer Modeling of Physical Processes
Course Workload:
Types of classes | hours |
---|---|
Lectures | 15 |
Practical works | |
Laboratory works | 30 |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 75 |
Form of final control | Exam |
Final assessment method |
Component: University component
Cycle: Profiling disciplines
Goal
- To provide students with the basics of theoretical training in the field of electron microscopy, which allows future undergraduates to navigate the flow of scientific and technical information and provides them with the opportunity to use new physical principles in the areas of technology in which they specialize.
Objective
- Students ' assimilation of the basic physical phenomena and laws of classical physics, methods of physical research. Development of students ' ability and skills to solve generalized standard educational problems of the discipline (theoretical and experimental-practical). Familiarization of students with measuring and research equipment, development of the ability to conduct experimental research, process the results of the experiment and analyze them.
Learning outcome: knowledge and understanding
- interpret the results of electron microscopic studies; Possess: approaches of various methods of electron microscopic research for the analysis of substances and materials.
Learning outcome: applying knowledge and understanding
- Development of students ' skills and abilities to solve generalized standard educational problems of the discipline (theoretical and experimental-practical).
Learning outcome: formation of judgments
- Formation of students ' scientific thinking and dialectical worldview, correct understanding of the limits of applicability of various physical concepts, laws, theories, and the ability to assess the degree of reliability of results obtained using electron microscopic methods.
Learning outcome: communicative abilities
- willingness to cooperate with colleagues, work in a team.
Learning outcome: learning skills or learning abilities
- The development of students ' creative thinking, skills of independent cognitive activity, the ability to simulate physical situations using an electron microscope and a computer.
Teaching methods
When conducting training sessions, the following educational technologies are provided: - interactive lecture (using the following active forms of learning: guided discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - building scenarios for various situations based on the specified conditions; - information and communication technology (for example, classes in a computer class using professional software packages); - search and research (independent research activity of students in the learning process); - the solution of educational tasks.
Assessment of the student's knowledge
Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.
Period | Type of task | Total |
---|---|---|
1 rating | Colloquium | 0-100 |
Individual tasks | ||
Performing and protecting laboratory work | ||
Border control 1 | ||
2 rating | Border control 2 | 0-100 |
Colloquium | ||
Individual tasks | ||
Performing and protecting laboratory work | ||
Total control | Exam | 0-100 |
The evaluating policy of learning outcomes by work type
Type of task | 90-100 | 70-89 | 50-69 | 0-49 |
---|---|---|---|---|
Excellent | Good | Satisfactory | Unsatisfactory |
Evaluation form
The student's final grade in the course is calculated on a 100 point grading scale, it includes:
- 40% of the examination result;
- 60% of current control result.
The final grade is calculated by the formula:
FG = 0,6 | MT1+MT2 | +0,4E |
2 |
Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;
E is a digital equivalent of the exam grade.
Final alphabetical grade and its equivalent in points:
The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:
Alphabetical grade | Numerical value | Points (%) | Traditional grade |
---|---|---|---|
A | 4.0 | 95-100 | Excellent |
A- | 3.67 | 90-94 | |
B+ | 3.33 | 85-89 | Good |
B | 3.0 | 80-84 | |
B- | 2.67 | 75-79 | |
C+ | 2.33 | 70-74 | |
C | 2.0 | 65-69 | Satisfactory |
C- | 1.67 | 60-64 | |
D+ | 1.33 | 55-59 | |
D | 1.0 | 50-54 | |
FX | 0.5 | 25-49 | Unsatisfactory |
F | 0 | 0-24 |
Topics of lectures
- The interaction of an electron beam with a substance
- The general device of the scanning electron microscope
- Image formation in a scanning electron microscope
- Types of scanning electron microscopy
- X-ray spectral analysis in scanning electron microscopy
- Backscattered electron diffraction analysis
- Scanning electron microscopy with ion beams, preparation of samples for transmission electron microscopy and manipulators
- Electron lithography and electron microscopy
- The use of scanning electron microscopy to obtain and study the structure of materials
- Special software
- The main manufacturers of electron microscopes and variants of devices, set-top boxes and accessories to them
- The general device of a transmission electron microscope
Key reading
- 1. Д. Брандон, У. Каплан. Микроструктура материалов. Методы исследования и контроля. М.: Техносфера, 2004. 384 с. (в качестве начального чтения, с оговорками относительно перевода терминов; есть электронная английская версия 2-го издания за 2008 г.) 2. Гоулдстейн Дж., Ньюбери Д., Эчлин П., Джой Д., Фиори Ч., Лифшин Ф. Растровая электронная микроскопия и рентгеновский микроанализ: в двух книгах. Пер. с англ. — М.: Мир, 1984. 303 с. (есть электронная версия этого издания; есть также электронный вариант более поздней версии 2003 г на английском языке) 3. V.D. Scott, G. Love. Quantitative electron-probe microanalysis. - Ellis Horwood Ltd., 1983, 345 p. (есть электронный версия) 4. D.B. Williams, C.B. Carter. Transmission Electron Microscopy. A Textbook for Materials Science. In 4 Books – Plenum Press New York&London, 1996 (есть электронная версия). 5. A Guide to Scanning Microscope Observation http://www.jeolusa.com/DesktopModules/Bring2mind/DMX/Download.aspx?Command=Core_Download&EntryId=1&PortalId=2&TabId=320. (очень удачное руководство для начинающего пользователя РЭМ) 6. Л.Н. Мазалов. Рентгеновские спектры. Новосибирск: ИНХ СО РАН, 2003. 7. Д. Синдо, Т. Оикава, Аналитическая просвечивающая электронная микроскопия. Пер. с англ. - М.: Техносфера, 2006, 256 с. 8. Хейденрайх Р. Основы просвечивающей электронной микроскопии.- М.: Мир, 1966. – 471 с. 9. Томас Г., Гориндж М.Дж. Просвечивающая электронная микроскопия материалов. – М.: Наука, 1983. – 317 с. 10. Утевский Л.М. Дифракционная электронная мироскопия в металловедении. – М.: Металлургия, 1973. – 584 с. 11. Эндрюс К., Дайсон Д., Киоун С. Электронограммы и их интерпретация. – М.: Мир, 1971. – 256 с. 5. Бушнев Л.С., Колобов Ю.Р., Мышляев М.М. Основы электронной микроскопии. – Томск,ТГУ, 1989.- 218 12. Практические методы в электронной микроскопии/ Под ред. О.М.Глоэра.- Машиностроение,1980.- 375 с.