Алгоритмы машинного обучения
Beschreibung: Дисциплина направлена изучение принципов работы, архитектуры и применения различных алгоритмов, позволяющих вычислительным ресурсам обучаться на данных и выполнять задачи без явного программирования. Курс охватывает широкий спектр тем, от фундаментальных алгоритмов, таких как линейная регрессия, логистическая регрессия, метод k-ближайших соседей и дерево решений, до более сложных моделей, таких как нейронные сети, машинное обучение с учителем, машинное обучение без учителя и глубокое обучение. Курс позволит магистрантам сформировать понимание различных типов алгоритмов машинного обучения и применять подходящие алгоритмы для решения различных задач. В рамках курса будут изучены вопросы реализации алгоритмов машинного обучения; настройки параметров алгоритмов; обучения и тестирования моделей; визуализации результатов; разработки и реализации систем машинного обучения для решения реальных задач. По завершению курса обучающий будет иметь глубокое понимание концепций и практические навыки для разработки успешных систем машинного обучения.
Betrag der Credits: 5
Пререквизиты:
- Компьютерное моделирование
Arbeitsintensität der Disziplin:
Unterrichtsarten | Uhr |
---|---|
Vorträge | 15 |
Praktische Arbeiten | |
Laborarbeiten | 30 |
AASAL (Autonomes Arbeiten der Schüler unter Anleitung des Lehrers) | 30 |
SE (Studentisches Eigenarbeiten) | 75 |
Endkontrollformular | экзамен |
Form der Endkontrolle |
Komponente: Компонент по выбору
Zyklus: Базовые дисциплины