Алгоритмы машинного обучения
Описание: Дисциплина направлена изучение принципов работы, архитектуры и применения различных алгоритмов, позволяющих вычислительным ресурсам обучаться на данных и выполнять задачи без явного программирования. Курс охватывает широкий спектр тем, от фундаментальных алгоритмов, таких как линейная регрессия, логистическая регрессия, метод k-ближайших соседей и дерево решений, до более сложных моделей, таких как нейронные сети, машинное обучение с учителем, машинное обучение без учителя и глубокое обучение. Курс позволит магистрантам сформировать понимание различных типов алгоритмов машинного обучения и применять подходящие алгоритмы для решения различных задач. В рамках курса будут изучены вопросы реализации алгоритмов машинного обучения; настройки параметров алгоритмов; обучения и тестирования моделей; визуализации результатов; разработки и реализации систем машинного обучения для решения реальных задач. По завершению курса обучающий будет иметь глубокое понимание концепций и практические навыки для разработки успешных систем машинного обучения.
Количество кредитов: 5
Пререквизиты:
- Компьютерное моделирование
Трудоемкость дисциплины:
Виды работ | часы |
---|---|
Лекции | 15 |
Практические работы | |
Лабораторные работы | 30 |
СРОП | 30 |
СРО | 75 |
Форма итогового контроля | экзамен |
Форма проведения итогового контроля |
Компонент: Компонент по выбору
Цикл: Базовые дисциплины