Asel A. Naizabayeva

Dissertation topic

Control of power consumption system with neural networks

Domestic scientific consultant

Shvets Olga Yakovlevna, PhD, Associate Professor, Hirsch Index-3 based on Scopus, D. Serikbayev EKTU, Associate Professor, School of Information Technologies and Intelligent Systems, Ust-Kamenogorsk, Republic of Kazakhstan.

Foreign scientific consultant

Seebauer Eva Marta, Hirsch index -8 based on Scopus, Deputy Rector for Educational Work, Dr., Associate Professor, Obuda University, Szekesfehervar, Hungary.

Main scientific results

1. The smart home energy management system should use a new infrastructure based on modern technologies, such as the DSE controller, smart devices, advanced communications, electrothermal models of important components, and advanced optimization models. The main advantage of this energy management system is that it will allow you to manage and monitor a home in real time, which includes all the components connected to it (for example, a distribution transformer and home appliances). The management system should work without changing the customer's lifestyle.

2. Digital filtering was used to check the functionality of the system components. It was found that sampling at a rate of 1000 per second and averaging consecutive blocks of 100 samples reduces the ripple to an acceptable level, although it requires a fairly high cost in terms of computing power.

3. The designed inverter is controlled by a computer in real time. The installation should work successfully for the entire experiment – at least one month.

Direct result

The experimental installation is designed and implemented in accordance with the developed schemes and requirements.The choice of generators for the experimental installation was determined by the available equipment. In the experimental setup, monocrystalline and polycrystalline photovoltaic modules were used. Once installed on the roof, they can be considered as built-in renewable energy sources.The device "Smart socket" is designed. A software product was created to predict energy consumption.

Scientific works

1. Найзабаева А.А., Алимханова А.Ж., Амангельдина М.А. Исследование передачи данных с использованием светодиодных элементов освещения под управлением ЭВМ Вестник, Восточно-Казахстанского государственного технического университета им. Д.Серикбаева, ISSN 1561-4212, №4, декабрь 2019 г. стр 58-61. Рекомендуется ККСОН.

2. Asel Naizabayeva, Olga Shvets,  Alibi Toleugazin,  Seebauer Márta Autonomous power supply systems optimization for energy efficiency increasing. AIS 2019, 15 th International Symposium on Applied Informatics and Related Areas organized in the frame of Hungarian Science Festival 2020 by Óbuda University,  November 12, 2020, р128-132 Székesfehérvár, Hungary. http://ais.amk.uni-obuda.hu/proceedings/2020/AIS2020_Proceedings.pdf.

3. Asel Naizabayeva, Alexander Baklanov, Seebauer Márta, Soltan Almas AIS 2019, 14 th International Symposium on Applied Informatics and Related Areas organized in the frame of Hungarian Science Festival 2019 by Óbuda University, November 14, 2019, р.13-16. Székesfehérvár, Hungary.

4. Найзабаева А.А., Бакланов А.Е., Энергияны үнемдеу үшін баламалы энергия көздерін қолдану. Вестник, Восточно-Казахстанского государственного технического университета им. Д.Серикбаева, ISSN 1561-4212, №3, октябрь 2020 г. стр. 111-114. /files/vestnik/Vestnik_3-2020.pdf. Рекомендуется ККСОН.

5. Найзабаева А.А., Бакланов А.Е., Эффективный мониторинг и контроль потребления солнечной энергии светодиодными осветительными приборами с встроенным микроконтроллером. Вестник, Восточно-Казахстанского государственного технического университета им. Д.Серикбаева, ISSN 1561-4212, №3, октябрь 2020 г. стр. 115-119. /files/vestnik/Vestnik_3-2020.pdf. Рекомендуется ККСОН.

The Hirsch index

-

Funded research projects

-

Level of foreign language proficiency

-