Математика 1

Дронсейка Ирина Пранасовна

Портфолио преподавателя

Описание: Элементы линейной и векторной алгебры, элементы аналитической геометрии, введение в математический анализ; дифференциальное исчисление функции одной переменной и их приложения, дифференциальное исчисление функции нескольких переменных и их приложения. Новейшие технические методы вычислений позволяют использовать математические исследования, касающиеся любой отрасли науки, и доводить решение до практического применения.

Количество кредитов: 4

Трудоемкость дисциплины:

Виды работ часы
Лекции 15
Практические работы 30
Лабораторные работы
СРОП 30
СРО 45
Форма итогового контроля экзамен
Форма проведения итогового контроля Тест

Компонент: Вузовский компонент

Цикл: Базовые дисциплины

Цель
  • Целью преподавания дисциплины является изложение основных понятий и методов, являющихся основной базой для освоения дисциплин, использующих математические модели, формирование у студентов теоретических знаний и практических навыков применения математических методов при постановке и решении прикладных задач.
Задача
  • студент должен приобрести знания основных понятий дисциплины, понимание и умение доказательства теории, навыков в решении практических задач с использованием математического аппарата данного курса
Результат обучения: знание и понимание
  • Знает формулы и свойства, символики основных понятий анализа, теорию сравнения бесконечно малых, а также методы решения задач линейной алгебры и аналитической геометрии и дифференциального и интегрального исчисления функции одной и нескольких переменных по дисциплине «математика 1».
Результат обучения: применение знаний и пониманий
  • Знания, полученные при изучении дисциплины « Математика 1» успешно применяет при решении прикладных задач, составлении математических моделей различных задач и в сравнительном анализе данных, также в комплексной инженерной деятельности.
Результат обучения: формирование суждений
  • Способен самостоятельно применять методы и средства познания, обучения и самоконтроля, осознавать перспективность интеллектуального, культурного, нравственного, физического и профессионального саморазвития и самосовершенствования, умеет критически оценивать свои достоинства и недостатки.
Результат обучения: коммуникативные способности
  • Способен эффективно работать индивидуально и в качестве члена команды, демонстрируя навыки руководства отдельными группами исполнителей, в том числе над междисциплинарными проектами, умеет проявлять личную ответственность, приверженность профессиональной этике и нормам ведения профессиональной деятельности.
Результат обучения: навыки обучения или способности к учебе
  • Анализирует и разрабатывает самостоятельно существующую техническую документацию; четко излагает и защищает результаты комплексной инженерной деятельности в области автоматизации и управления. Владеет аналитическим способам представления математической информации для создания математической модели прикладных задач.
Методы преподавания

интерактивные технологии (с активными формами обучения: контролируемая беседа; модерация; мозговой штурм; мотивационная речь);

самостоятельная исследовательская работа студентов во время учебного процесса;

решение учебных задач.

Оценка знаний обучающегося

Преподаватель проводит все виды работ текущего контроля и выводит соответствующую оценку текущей успеваемости обучающихся два раза в академический период. По результатам текущего контроля формируется рейтинг 1 и 2. Учебные достижения обучающегося оцениваются по 100-балльной шкале, итоговая оценка Р1 и Р2 выводится как средняя арифметическая из оценок текущей успеваемости. Оценка работы обучающегося в академическом периоде осуществляется преподавателем в соответствии с графиком сдачи заданий по дисциплине. Система контроля может сочетать письменные и устные, групповые и индивидуальные формы.

Период Вид задания Итого
1  рейтинг ИДЗ-1.1 0-100
ИДЗ-1.2
ИДЗ-2.1-2.2
Коллоквиум
Рубежный тест 1
2  рейтинг ИДЗ 3.1-3.2 0-100
ИДЗ 5.1-5.2
ИДЗ 6.1-6.3
Коллоквиум
Рубежный тест 2
Итоговый контроль экзамен 0-100
Политика оценивания результатов обучения по видам работ
Вид задания 90-100 70-89 50-69 0-49
Отлично Хорошо Удовлетворительно Неудовлетворительно
Форма оценки

Итоговая оценка знаний обучающего по дисциплине осуществляется по 100 балльной системе и включает:

  • 40% результата, полученного на экзамене;
  • 60% результатов текущей успеваемости.

Формула подсчета итоговой оценки:

И= 0,6 Р12 +0,4Э
2

 

где, Р1, Р2 – цифровые эквиваленты оценок первого, второго рейтингов соответственно; Э – цифровой эквивалент оценки на экзамене.

Итоговая буквенная оценка и ее цифровой эквивалент в баллах:

Буквенная система оценки учебных достижений обучающихся, соответствующая цифровому эквиваленту по четырехбалльной системе:

Оценка по буквенной системе Цифровой эквивалент Баллы (%-ное содержание) Оценка по традиционной системе
A 4.0 95-100 Отлично
A- 3.67 90-94
B+ 3.33 85-89 Хорошо
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Удовлетворительно
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Неудовлетворительно
F 0 0-24
Темы лекционных занятий
  • Матрицы
  • Системы линейных уравнений
  • Векторы
  • Векторные и смешанные произведения векторов, их алгебраические и геометрические свойства
  • Прямая на плоскости
  • Плоскость
  • Предел функции
  • Замечательные пределы
  • Задачи механики, приводящие к понятию производной
  • Производные обратной, неявной, параметрически заданной функций
  • Условия возрастания и убывания функций
  • Функции нескольких переменных
  • Частные производные первого порядка
  • Производная по направлению
  • Производные и дифференциалы высших порядков функций нескольких перемеренных; Экстремум функций нескольких переменных
Основная литература
  • Берман Г.Н. Сборник задач по курсу математического анализа. – М.: Наука, 2006.
  • Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. – М.: Физматлит, 2011.
  • Клетеник Д.В. Сборник задач по аналитической геометрии. – М.: Профессия, 2013.
  • Письменный Д.Т. Конспект лекций по высшей математике. – М.: Айрис-Пресс, 2014, ч.1.
  • Рябушко А.П., Бархатов В.В. и др. Индивидуальные задания по высшей математике.- Минск: Высшая школа, 2015, Т.1,2,3.