Математическое моделирование энергетических процессов
Описание: Данная дисциплина рассматривает вопросы математического моделирования в аспекте задач теплоэнергетики: математические модели энергетических процессов, их формы, построения и упрощения; методы и алгоритмы в системах с сосредоточенными параметрами в статических и динамических системах; методы и алгоритмы в системах с рассредоточенными параметрами; решение краевых задач; методы и алгоритмы в геометрических объектах.
Количество кредитов: 5
Пререквизиты:
- Теоретические основы теплотехники
Трудоемкость дисциплины:
Виды работ | часы |
---|---|
Лекции | 15 |
Практические работы | 30 |
Лабораторные работы | |
СРОП | 75 |
СРО | 30 |
Форма итогового контроля | экзамен |
Форма проведения итогового контроля | Письменный экзамен |
Компонент: Компонент по выбору
Цикл: Базовые дисциплины
Цель
- связать общетеоретический курс математики с её конкретным применением при решении различных задач теплоэнергетики, дать математический и методологически аппарат для прикладных исследований.
Задача
- Подготовить обучающихся к восприятию теоретических вопросов в специальных курсах и сознательному применению при решении прикладных задач методов и приёмов, приводящих наиболее быстро к достоверным результатам. Обучающиеся должны иметь представление о ряде основных задач, решаемых в области теплоэнергетики: расчеты нормальных режимов работы теплотехнического оборудования, исследование устойчивости его функционирования, оптимизация режимов по критерию энергоэффективности.
Результат обучения: знание и понимание
- Знать основные математические уравнения для решения энергетических задач, уметь проводить расчеты для получения результатов.
Результат обучения: применение знаний и пониманий
- Обладать навыками постановки математических задач энергетических процессов, применять методы программирования для решения поставленных задач, анализировать результаты в соответствии с граничными и начальными условиями.
Результат обучения: формирование суждений
- Иметь способности обосновывать математическое решение и моделировать технологические процессы энергетики для решения производственных, практических и лабораторных проблем.
Результат обучения: коммуникативные способности
- Быть способным анализировать режимы работы теплотехнического оборудования на основе математических методов, исследовать устойчивость его функционирования, обрабатывать полученные результаты и анализировать режимы работы энергетических процессов в команде.
Результат обучения: навыки обучения или способности к учебе
- Владеть навыками определения целесообразности исследований и обработки полученных результатов, использовать современные вычислительные средства при проведении исследований на основе математического и компьютерного моделирования энергетических процессов.
Методы преподавания
В условиях кредитной технологии обучения занятия должны проводиться преимущественно в активных и творческих формах. В числе эффективных педагогических методик и технологий, способствующих вовлечению обучающихся в поиск и управление знаниями, приобретению опыта самостоятельного решения задач, следует выделить: - технология проблемно- и проектно-ориентированного обучения; - технологии учебно-исследовательской деятельности; - коммуникативные технологии (дискуссия, пресс-конференция, мозговой штурм, учебные дебаты и другие активные формы и методы); - метод кейсов (анализ ситуации); - игровые технологии, в рамках которых обучающиеся участвуют в деловых, ролевых, имитационных играх; - информационно-коммуникационные (в том числе дистанционные образовательные) технологии.
Темы лекционных занятий
- Введение
- Приближение функций
- Аппроксимация функций одной переменной
- Элементы теории вероятностей и математической статистики
- Системы
- Управление
- Оптимизационные задачи
- Линейное программирование
- Нелинейное программирование
- Аналитические методы поиска условного и безусловного экстремума функции нескольких переменных
- Численные методы поиска условного экстремума функции нескольких переменных
- Численные методы нахождения условного экстремума функции многих переменных
Основная литература
- Гордиевский И.Г. Критериальный анализ некоторых технико- экономических задач энергетики. - М.: Высшая школа, 2002.
- Волков Л.Т. Математические задачи энергетики. Типовые задачи: Учеб.пос. / -М.: Энергия, 2003.
- Трусов П.В. Введение в математическое моделирование. -М.: «Логос», 2004.
- Логинов, В.С. Примеры и задачи по тепломассообмену: Учебное пособие / В.С. Логинов, А.В. Крайнов, В.Е. Юхнов и др. - СПб.: Лань, 2019. - 256 c.
Дополнительная литература
- Уравнения в частных производных для инженеров: Перевод с английского. Шарма Дж.Н., Сингх К. - Изд.: «Техносфера», 2002.
- Оптимальные решения: Лекции по методам обработки измерений. Саврасов Ю.С. - Изд.: «Радио и связь», 2000. - 151 с.
- Рунова, Е.М. Примеры и задачи по тепломассообмену: Учебное пособие / Е.М. Рунова, С.А. Чжан и др. - СПб.: Лань, 2011. - 256 c.
- Пашков, Л. Т. Математические модели процессов в паровых котлах / Л. Т. Пашков. — Москва, Ижевск : Институт компьютерных исследований, 2019. — 208 c. — ISBN 978-5-4344-0716-8. https://www.iprbookshop.ru