Modern energy production technologies

Baidildina Aizhan

The instructor profile

Description: The course of the discipline examines current trends and the basic principles of energy production, primarily thermal. The main directions are presented: digitalization and increasing the energy efficiency of traditional energy, renewable energy sources, nuclear energy technologies

Amount of credits: 5

Пререквизиты:

  • Resource Saving Technologies in Heat-And-Power Engineering

Course Workload:

Types of classes hours
Lectures 15
Practical works 30
Laboratory works
SAWTG (Student Autonomous Work under Teacher Guidance) 75
SAW (Student autonomous work) 30
Form of final control Exam
Final assessment method

Component: University component

Cycle: Profiling disciplines

Goal
  • to give an idea to the student about the current trends in the development of science in the professional field of energy production technologies.
Learning outcome: knowledge and understanding
  • know and understand the trends in the development of energy production technologies
Learning outcome: applying knowledge and understanding
  • correlate the acquired knowledge and understanding in relation to the topic of the selected scientific research
Learning outcome: formation of judgments
  • develop the subject of selected scientific research at the level of modern energy production technologies
Learning outcome: communicative abilities
  • be able to reasonably substantiate the results of scientific research from the point of view of modern energy production technologies
Learning outcome: learning skills or learning abilities
  • analyze the results of the study from the point of view of modern energy production technologies, independently carry out a constant search, monitoring and analysis of modern energy production technologies
Teaching methods

Изучение теории в связке с оборудованием используемого на тепловых станциях. Проведение исследовательских работ по теме диссертации

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating Методы расчета нормативов потерь тепловой энергии при передаче по тепловым сетям. 0-100
Методы расчета нормативов удельных расходов топлива на отпущенную электрическую и тепловую энергию от тепловых электростанций и котельных.
Методы расчета нормативов потерь электрической энергии при передаче по электрическим сетям.
Устный опрос
Рубежный контроль 1
2  rating Методика сбора и анализа исходных данных по системам энергопотребления. 0-100
Оценка потенциала энергосбережения, разработка мероприятий по энергосбережению
Составление энергетических балансов. Методика сбора и анализа исходных данных по системам энергопотребления.
Устный опрос
Рубежный контроль 2
Total control Exam 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
All types of assignments are assessed with 100 points (Calculation methods, oral questioning, boundary control, etc.) Know: · physical foundations of reliability analysis of electric power systems; · methods for calculating reliability indicators of electric power systems; · methods for synthesizing electrical power systems and networks at a given level of reliability. Be able to: · calculate indicators of the level of reliability of electric power systems; · synthesize diagrams of electrical power systems according to a given level of reliability; Own: · skills in drawing up design equivalent circuits for calculating reliability indicators of electric power systems and networks. A complete, detailed answer to the question posed is given, the totality of conscious knowledge about the object is shown, the main provisions of the topic are conclusively revealed; the answer shows a clear structure, a logical sequence that reflects the essence of the concepts, theories, and phenomena being revealed. Knowledge about an object is demonstrated against the background of understanding it in the system of a given science and interdisciplinary connections. The answer is stated in literary language in scientific terms. There may be shortcomings in the definition of concepts, which are corrected by the student independently during the answering process A complete, but insufficiently consistent answer to the question posed is given, but at the same time the ability to identify essential and non-essential features and cause-and-effect relationships is demonstrated. The answer is logical and stated C+ 70-74 in scientific terms. There may be 1-2 mistakes made in defining basic concepts, which the student finds difficult to correct on his own An incomplete answer was given, representing scattered knowledge on the topic of the question with significant errors in definitions. There is fragmentation and illogical presentation. The student does not realize the connection of this concept, theory, phenomenon with other objects of the discipline. There are no conclusions, specificity and evidence of the presentation. Speech is illiterate. Additional and clarifying questions from the teacher do not lead to correction of the student’s answer not only to the question posed, but also to other questions in the disciplines A complete, detailed answer to the question posed is given, the totality of conscious knowledge about the object is shown, the main provisions of the topic are conclusively revealed; the answer shows a clear structure, a logical sequence that reflects the essence of the concepts, theories, and phenomena being revealed. Knowledge about an object is demonstrated against the background of understanding it in the system of a given science and interdisciplinary connections. The answer is stated in literary language in scientific terms. There may be shortcomings in the definition of concepts, which are corrected by the student independently during the answering process
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • Мировой энергетический баланс
  • Энергосбережение и экологическая безопасность
  • Порядок расчета норм потребления и потерь топливно-энергетических ресурсов
  • Методы расчета нормативов потерь тепловой энергии при передаче по тепловым сетям
  • Методы расчета нормативов потерь электрической энергии при передаче по электрическим сетям
  • Нормирование потребления энергоресурсов в зданиях и сооружениях
  • Расчет потребления топливно-энергетических ресурсов
  • Методика сбора и анализа исходных данных по системам энергопотребления
  • Методика сбора и анализа исходных данных по системам энергопотребления
  • Тепловизионное обследование энергетических и технологических объектов
  • Теоретические основы применения конденсационных утилизаторов теплоты влажных газов
  • Применение конденсационных теплоутилизаторов в системах вентиляции и кондиционирования воздуха
  • Теоретические основы применения теплонасосных установок
  • Проблема эффективного использования водных ресурсов
  • Ресурсосбережение при утилизации твердых бытовых отходов
Key reading
  • Голубков Б.Н. «Теплотехническое оборудование и теплоснабжение промышленных предприятий, М: Энергия, 2009г-544с.
  • Бакластов А.М. «проектирование, монтаж и эксплуатация теплоиспользующих установок, М: Энергия, 2007-289с.
  • Плановский А.Н. «Процессы и аппараты химической технологии», С.Петербург: Химия, 2009г-303с.
Further reading
  • Соловьев Ю.П. «Вспомогательное оборудование ТЭЦ, центральных котельных и его автоматизация», М: Энергия, 2008г,318 с.