Дифференциальные уравнения
内容描述: Дифференциальные уравнения первого порядка. Дифференциальные уравнения высших порядков, допускающих понижение порядка. Структура решения линейного однородного и неоднородного уравнений. Метод вариации произвольной постоянной. Системы линейных дифференциальных уравнений и основные методы ее решения. Краевая задача для линейного уравнения второго порядка. Основные понятия теории устойчивости. Уравнения с частными производными первого порядка.
贷款数: 5
Пререквизиты:
- Математический анализ 2
*СomplexityDiscipline(zh-CN)*:
| *TypesOfClasses(zh-CN)* | *hours(zh-CN)* |
|---|---|
| *Lectures(zh-CN)* | 15 |
| *PracticalWork(zh-CN)* | 30 |
| *LaboratoryWork(zh-CN)* | |
| *srop(zh-CN)* | 30 |
| *sro(zh-CN)* | 75 |
| *FormOfFinalControl(zh-CN)* | экзамен |
| *FinalAssessment(zh-CN)* |
零件: Вузовский компонент
循环次数: Базовые дисциплины
Цель
- Формирование у студентов научного и практического представления о математических методах описания и решения практических задач в технике, технологиях, экономике.
Задача
- - основные методы решения прикладных задач по данной дисциплине, связанных со специальностью, действия с различными величинами и оценка их порядка;
- - приближенные методы решения дифференциальных и интегральных уравнений, а так же их систем;
- - приближенные методы анализа задач и контроля правильности решений.
Результат обучения: знание и понимание
- знание и понимание основных математических определений, теорем и др. теоретических сведений курса «Дифференциальные уравнения», а также знание типов задач решаемых теми или иными математическими методами
Результат обучения: применение знаний и пониманий
- применение знаний и умений в формулировании прикладных практических задач математическими методами, а также применение известных методов для решения сформулированных задач;
Результат обучения: формирование суждений
- умение на основе имеющихся знаний дисциплины " Дифференциальные уравнения " делать выводы о возможных методах анализа и решения практических задач в специальной области;
Результат обучения: коммуникативные способности
- умение работать в коллективе для эффективного решения поставленных практических задач на основе знаний математических методов;
Результат обучения: навыки обучения или способности к учебе
- способность самостоятельного или на основе учебных образовательных программ повышения квалификации в области математических знаний в целях соответствия современным требованиям специальности.
*TeachingMethods(zh-CN)*
Основными формами обучения дисциплине являются тематические лекции, практические занятия, самостоятельная работа обучающегося под руководством преподавателя, консультации. Основными методами чтения лекций являются проблемное, диалогическое, персонифицированное изложения. В лекциях-визуализациях может быть использована визуальная форма подачи лекционного материала средствами ТСО, аудио-видеотехники, натуральных объектов, моделей, символической наглядности, мультимедиа и сводится к развернутому или краткому комментированию лектором этих материалов. Практические занятия являются групповой формой обучения и имеют целью закрепление теоретического материала. На них решеются типовые задачи и выполняются упражнения по темам курса. Практические занятия также могут проводиться с использованием мультимедийной и компьютерной техники и программного обеспечения.
Темы лекционных занятий
- Уравнения с разделенными и разделяющимися переменными. Однородные дифференциальные уравнения 1-го порядка.
- Линейные дифференциальные уравнения 1-го порядка. Уравнения Бернулли.
- Дифференциальные уравнения в полных дифференциалах. Уравнение Клеро. Уравнение Лагранжа.
- Уравнения высших порядков, допускающие понижение порядка. Задача Коши.
- Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- Краевая задача для линейного уравнения. Задача Штурма-Лиувиля.
- Системы линейных дифференциальных уравнений и методы их решения.
- Основные понятия теории устойчивости. Устойчивость по Ляпунову. Методы исследования на устойчивость.
- Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
- Уравнения с частными производными первого порядка
Основная литература
- 1 Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. М., 2009. Т1,2. 2 Г. Мутанов, Н.Хисамиев, С.Тыныбекова. Проблемно-ориентированный курс дифференциальных уравнений для студентов технических вузов.-Усть-Каменогорск, 2008. 3 В.В.Амельсин. Дифференциальные уравнения в приложениях. - М.: Наука, 2011. 4 А.Б.Васильева, А.Н.Тихонов. Интегральные уравнения.– М.: ФИЗМАТЛИТ, 2008. 5 А.Н.Тихонов. Дифференциальные уравнения: учебник для вузов.- М.:Лань, 2008. 6 Берман Г.Н. Сборник задач по курсу математического анализа. – М.: ФИЗМАТЛИТ, 2009. 7 Демидович Б.П. Сборник задач и упражнений по математическому анализу: учебное пособие.-М.:Астрель-АСТ,2010. 8 А.Б.Васильева, Г.Н.Медведев, А.Н.Тихонов. Дифференциальные и интегральные уравнения, вариационное исчисление в примерах и задачах. –М.:ФИЗМАТЛИТ,2012. 9 Никольский С.М. Курс математического анализа. Главная редакция физико- математической литературы изд-ва «Наука», 2010. Т1,2 10 Тыныбекова С.Д. Дифференциальные и интегральные уравнения. - Усть-Каменогорск, 2012.
Дополнительная литература
- Данко И.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. – М.: Высшая школа, 2010 ч.1,2. 12 Кузнецов Л.А. Сборник задач по высшей математике (типовые расчеты). – М.: Высш. школа, 2010. 13 Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. – М.: Пресс, 2007, 1985, Т.1,2. 14 Кудрявцев Л.Д. Математический анализ. Учебник для вузов. М., Высш. шк., 2000. 15 Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа. (под ред. Ефимова А.В. и Демидовича Б.П.) - М.: Наука, 2005. 16 Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. – М.: Дрофа, 2006.