Theoretical Foundations of Electrical Engineering I
Description: The discipline specializes in the study of DC circuits and the elements in them. The basic laws that are implemented in the series are provided with complete information, in connection with which tasks are performed, topographic diagrams of the relationships between current and voltage are considered. Concepts of AC circuits, sinusoidal laws, laws of current, voltage and EMF changes, efficiency of parameter values
Amount of credits: 4
Пререквизиты:
- Physics
Course Workload:
Types of classes | hours |
---|---|
Lectures | 15 |
Practical works | 15 |
Laboratory works | 15 |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 45 |
Form of final control | Exam |
Final assessment method |
Component: University component
Cycle: Base disciplines
Goal
- The study, both from the qualitative and quantitative side, of steady-state processes in linear circuits of single-phase sinusoidal and three-phase current. This course, based on the courses of physics and higher mathematics, contains the general theory of circuits and engineering methods of their calculation, analysis and synthesis. It is of exceptional importance for the formation of the scientific outlook of specialists in the electric power industry, and all electric power disciplines are based on it
Objective
- on the basis of quantitative and qualitative knowledge about the processes that take place at various electrical installations, to prepare the student for successful and correct solution of problems of special technical disciplines. As a result of the discipline, students should acquire the necessary knowledge in the future.
Learning outcome: knowledge and understanding
- have an idea:-on solving engineering problems using methods for calculating direct current in linear electrical circuits; -on solving engineering problems in sinusoidal current circuits; -on solving engineering problems using methods for calculating various modes in three-phase circuits;
Learning outcome: applying knowledge and understanding
- know: -basic laws of DC electrical circuits;-basic laws of sinusoidal current electrical circuits;-schemes and formulas for calculating three-phase circuits;
Learning outcome: formation of judgments
- Perform measurements of electrical quantities and processing of measurement results. Experimentally determine the parameters and characteristics of the main electrical devices;
Learning outcome: communicative abilities
- ability to work in a team, sociability
Learning outcome: learning skills or learning abilities
- be able to: - apply the knowledge gained during the study of the course of the TOE to solve applied problems;-apply methods for calculating DC and sinusoidal current circuits;-explore different modes in three-phase circuits
Teaching methods
When conducting training sessions, the use of the following educational technologies is provided: - The methods (technologies) of training used in the course of teaching the discipline are indicated. Among the effective pedagogical techniques and technologies that contribute to the involvement of students in the search and management of knowledge, the acquisition of experience in solving various tasks independently, should be highlighted: - technologies of problem- and project-oriented learning; - technologies of educational and research activities; - communication technologies (discussion, press conference, brainstorming, educational debates, etc. other active forms and methods); -the case study method (situation analysis); - game technologies in which students participate in business, role-playing, simulation games; - information and communication (including distance education) technologies.
Assessment of the student's knowledge
Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.
Period | Type of task | Total |
---|---|---|
1 rating | Lecture summary, topic 1-7 | 0-100 |
Laboratory work 1 | ||
Laboratory work 2 | ||
Calculated graphic work 1 | ||
Calculated graphic work 2 | ||
Intermediate testing 1 | ||
2 rating | Lecture summary, topic 8-15 | 0-100 |
Laboratory work 3 | ||
Laboratory work 4 | ||
Calculated graphic work 3 | ||
Calculated graphic work 4 | ||
Intermediate testing 2 | ||
Total control | Exam | 0-100 |
The evaluating policy of learning outcomes by work type
Type of task | 90-100 | 70-89 | 50-69 | 0-49 |
---|---|---|---|---|
Excellent | Good | Satisfactory | Unsatisfactory |
Evaluation form
The student's final grade in the course is calculated on a 100 point grading scale, it includes:
- 40% of the examination result;
- 60% of current control result.
The final grade is calculated by the formula:
FG = 0,6 | MT1+MT2 | +0,4E |
2 |
Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;
E is a digital equivalent of the exam grade.
Final alphabetical grade and its equivalent in points:
The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:
Alphabetical grade | Numerical value | Points (%) | Traditional grade |
---|---|---|---|
A | 4.0 | 95-100 | Excellent |
A- | 3.67 | 90-94 | |
B+ | 3.33 | 85-89 | Good |
B | 3.0 | 80-84 | |
B- | 2.67 | 75-79 | |
C+ | 2.33 | 70-74 | |
C | 2.0 | 65-69 | Satisfactory |
C- | 1.67 | 60-64 | |
D+ | 1.33 | 55-59 | |
D | 1.0 | 50-54 | |
FX | 0.5 | 25-49 | Unsatisfactory |
F | 0 | 0-24 |
Topics of lectures
- Linear DC electrical circuits (6 hours)
- Electric circuits of single-phase sinusoidal current
- Three-phase circuits
- Non-sinusoidal currents
Key reading
- 1. М.М. Аршидинов,Л.П.Болдырева.Теоретические основы электротехники І . Методические указания и задания к выполнению расчетно-графических работ No1-3(для специальности 5В071800 –Электроэнергетика). Алматы: АУЭС, 2016, 18с. 2.Л.П.Болдырева, Г.К. Смагулова.Теоретические основы электротехники І. Методические указания и задания по выполнению лабораторных работ студентов специальности 5В071800–Электроэнергетика.Алматы: АУЭС, 2016, 35 с. 3.В.И.Денисенко, С.Ю.Креслина. Теоретические основы электротехники І.Конспект лекции (для студентов всех форм обучения специальности 050718 –Электроэнергетика). Алматы: АИЭС, 2007,62с. 4.В.И.Денисенко, С.Ю.Креслина. Теоретические основы электротехники 1.Конспект лекции (для студентов всех форм обучения специальности 050718 –Электроэнергетика). Алматы: АИЭС, 2006,63с. 5. Бессонов Л.А. Электрические цепи.-М.: Гардарики, 2013. –638 с. 6. Атабеков Г.И. ТОЭ. Линейные электрические цепи.-СПб.: «Лань»,2010
Further reading
- 7. ТОЭ т.1/под ред. Демирчян К.С. и др.-СПб. 20068. Сборник задач по теоретическим основам электротехники/ Л.Д.Бессонов, И.Г.Демидова, М.Е.Заруди и др.-М.: Высшая школа, 2003.-52с.9. Денисенко В.И., Зуслина Е.Х ТОЭ. Учебное пособие.-Алматы: АИЭС, 2000, 83 с.10.Демирчян К.С., Нейман Л.Р., Коровкин Н.В., Чечурин В.Л. Теоретические основы электротехники. Т.1. -СПб.: Питер, 2003.-463с.11.Прянишников В.А. ТОЭ: Курс лекций: Учебное пособие –3-е изд., перераб. и доп. –СПб., 2000 –368 с.12.Бессонов Л.А. Теоретические основы электротехники.-М.: Гардарики,1999. -638с.13.Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей.-М.: Энергоатомиздат, 1989. -528с.14.Электротехника и электроника в экспериментах и упражнениях: Практикум на ElectronicsWorkbench. В 2-х томах/ Под ред. Д.И. Панфилова –М.: ДОДЭКА, 1999.-т.1-Электротехника. –304с.