Mathematical Modeling of Engineering Processes
Description: Knowledge of the basic concepts and provisions of the course is necessary to expand your horizons in the field of mathematical modeling of engineering processes. Considerable attention is paid to the issues of reasonable choice of engineering model and acquisition of mathematical modeling of engineering processes
Amount of credits: 6
Course Workload:
Types of classes | hours |
---|---|
Lectures | 30 |
Practical works | 30 |
Laboratory works | |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 90 |
Form of final control | Exam |
Final assessment method |
Component: Component by selection
Cycle: Profiling disciplines
Goal
- Acquisition of knowledge about mathematical modeling tasks and basic requirements for mathematical models of engineering processes by undergraduates
Objective
- Study of mathematical modeling problems and basic requirements for mathematical models of engineering processes
Learning outcome: knowledge and understanding
- 1.Purpose of mathematical modeling of engineering processes. 2. Requirements for mathematical models of engineering processes. 3. Methods for constructing mathematical models of engineering processes
Learning outcome: applying knowledge and understanding
- 1.Choice of mathematical formulas for modeling engineering processes 2. Performing construction of mathematical models of engineering processes 3. Application of mathematical models for modeling engineering processes
Learning outcome: formation of judgments
- 1. The correct selection of the required mathematical relationships for modelling of engineering process 2. The construction of mathematical models of engineering processes
Learning outcome: communicative abilities
- Teamwork in engineering process modeling
Learning outcome: learning skills or learning abilities
- 1. Selection of necessary mathematical formulas for modeling engineering processes 2. Application of mathematical models for modeling new engineering processes
Teaching methods
Effects of interactive learning: - intensification of the process of understanding, assimilation and creative application of knowledge in solving practical problems; - increasing the level of motivation and involvement of participants in solving the discussed problems, which gives an emotional boost to the subsequent search activity of participants, encourages them to take concrete actions, the learning process becomes more meaningful; - formation of the ability to think differently, to see the problem situation in their own way, ways out of it
Assessment of the student's knowledge
Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.
Period | Type of task | Total |
---|---|---|
1 rating | Mathematical modeling of RTC | 0-100 |
2 rating | Technologies modeling | 0-100 |
Total control | Exam | 0-100 |
The evaluating policy of learning outcomes by work type
Type of task | 90-100 | 70-89 | 50-69 | 0-49 |
---|---|---|---|---|
Excellent | Good | Satisfactory | Unsatisfactory |
Evaluation form
The student's final grade in the course is calculated on a 100 point grading scale, it includes:
- 40% of the examination result;
- 60% of current control result.
The final grade is calculated by the formula:
FG = 0,6 | MT1+MT2 | +0,4E |
2 |
Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;
E is a digital equivalent of the exam grade.
Final alphabetical grade and its equivalent in points:
The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:
Alphabetical grade | Numerical value | Points (%) | Traditional grade |
---|---|---|---|
A | 4.0 | 95-100 | Excellent |
A- | 3.67 | 90-94 | |
B+ | 3.33 | 85-89 | Good |
B | 3.0 | 80-84 | |
B- | 2.67 | 75-79 | |
C+ | 2.33 | 70-74 | |
C | 2.0 | 65-69 | Satisfactory |
C- | 1.67 | 60-64 | |
D+ | 1.33 | 55-59 | |
D | 1.0 | 50-54 | |
FX | 0.5 | 25-49 | Unsatisfactory |
F | 0 | 0-24 |
Topics of lectures
- Basic concepts of discrete mathematics, models and modeling
- Algorithms: calculating the time norm, determining the possibility of processing by embedding, choosing the machine model
- Mathematical modeling, basic concepts
- Goals of mathematical modeling for technical objects and technical equipment
- Technologies modeling
- Mathematical modeling of machine systems
- The process of designing a special machine and its models at different levels
- Mathematical modeling of technological processes of mechanical processing design
- Design of mechanical processing equipment using mathematical models
- Mathematical modeling of the processing mechanism error of machining parts
- Neural network technologies in mechanical engineering
- Requirement for mathematical models
- Stages of building a mathematical model of the mechanism for generating processing errors
- Mathematical modeling of the parts of bodies of revolution
- Mathematical modeling of RTC
Key reading
- 1. Кангин В. В., Меретюк В. Н. - Математическое моделирование процессов в машиностроении/ 324- 2018 (ISBN: 978-5-94178-542-1) 2. Смирнов В. А. Математическое моделирование в машиностроении в примерах и задачах / 364-2018 (: 978-594-178-609-1) 3. Антонетти, П. МОП-БИС. Моделирование элементов и технологических процессов / П. Антонетти, Д. Антониадис, Р. Даттон, и др.. - М.: Радио и связь, 2012- 496 c. 4. Кузьмин, В. В. Математическое моделирование технологических процессов сборки и механической обработки изделий машиностроения / В.В. Кузьмин, А.Г. Схиртладзе. - М.: Высшая школа, 2008. - 280 c. 5. Новиков, Александр Николаевич; Иващук О. А. Компьютерное Моделирование Технологического Процесса Восстановления И Упрочнения Деталей Сельскохозяйственной Техники На Примере Мдо / Новиков Александр Николаевич; О. А. Иващук, Е.Д. Дворнов. - Москва: Машиностроение, 2013. - 772 c.
Further reading
- 1. Рыбин, Ю. И. Математическое моделирование и проектирование технологических процессов обработки металлов давлением / Ю.И. Рыбин, А.И. Рудской, А.М. Золотов. - М.: Наука, 2010.- 644 c. 2. Федоткин, И.М. Математическое моделирование технологических процессов / И.М. Федоткин. - М.: Либроком, 2011. - 936 c. 3. Иванов И. Е. Основы математического моделирования в машиностроении : учеб. пособие для студ. спец. "Технология машиностроения" / И. Е. Иванов, Е. И. Иванов ; Мин-во образования и науки Украины, ПГТУ. Каф. "Технологии машиностроения". - Мариуполь : ПГТУ, 2013. - 164 с. 4. Тихонов А.Н., Кальнер В.Д., В.Б. Гласко - Математическое моделирование технологических процессов и метод обратных задач в машиностроении // Машиностроение 1990 5. Орлов Александр - Математическое моделирование процессов в машиностроении (Виды математических моделей в машиностроении, применение математических моделей, моделирование различных процессов) – диссертация на соискание к.т.н.