Physics

Aringozhina Zarina Erzhanovna

The instructor profile

Description: Physics studies the General forms of motion of matter. The first section is devoted to kinematics and dynamics of a material point and a solid. The third - electrostatics, direct current and electromagnetism. The fourth - fluctuations and waves. Fifth –geometric and wave optics. The next - elements of the quantum theory of light and quantum mechanics. The seventh - the physics of the atom and the atomic nucleus.

Amount of credits: 6

Пререквизиты:

  • Физика. Школьный курс

Course Workload:

Types of classes hours
Lectures 15
Practical works 15
Laboratory works 30
SAWTG (Student Autonomous Work under Teacher Guidance) 30
SAW (Student autonomous work) 90
Form of final control Exam
Final assessment method

Component: University component

Cycle: Base disciplines

Goal
  • Creating the basis for students to have a fairly broad theoretical training in the field of physics, allowing future engineers to navigate the flow of scientific and technical information and providing them with the opportunity to use new physical principles in the areas of technology in which they specialize. 2 students ' Assimilation of basic physical phenomena and laws of classical and modern physics, methods of physical research. 3 Formation of students ' scientific thinking and dialectical Outlook, correct understanding of the limits of applicability of various physical concepts, laws, theories, and the ability to assess the degree of reliability of results obtained using experimental or mathematical research methods. 4 Familiarizing students with measuring equipment, developing the ability to conduct experimental research, process the results of the experiment and analyze them. 5 Development of students ' creative thinking, skills of independent cognitive activity, ability to model physical situations using a computer.
Objective
  • Knowledge of physical phenomena, concepts, laws, theories, methods, and practical facts; - formation of ideas that give the scientific appearance of the world in accordance with the degree of development of modern science; - familiarization with the main directions of scientific and technical progress with the application of the laws of physics in technology and engineering industry; - mastering methods and methods for solving specific problems or problems in various branches of physics; - familiarization with new modern scientific devices, the formation of physical perception skills
Learning outcome: knowledge and understanding
  • Students learn the basic physical phenomena and laws of classical and modern physics, methods of physical research
Learning outcome: applying knowledge and understanding
  • Familiarizing students with measuring equipment, developing the ability to conduct experimental research, process the results of the experiment and analyze them
Learning outcome: formation of judgments
  • Formation of students ' scientific thinking and dialectical Outlook, correct understanding of the limits of applicability of various physical concepts, laws, theories, and the ability to assess the degree of reliability of results obtained using experimental or mathematical research methods
Learning outcome: communicative abilities
  • Be able to organize their work, evaluate the results of their activities with a high degree of independence, possess skills of independent work; be able to apply basic knowledge in professional activities; possess theory and practical skills; analyze the results obtained, make the necessary conclusions and formulate proposals; present the results obtained in research in the form of reports
Learning outcome: learning skills or learning abilities
  • Development of students ' creative thinking, skills of independent cognitive activity, ability to model physical situations using a computer
Teaching methods

When conducting training sessions, the following educational technologies are provided: - interactive lecture (using the following active forms of learning: guided discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - building scenarios for various situations based on the specified conditions; - information and communication technology (for example, classes in a computer class using professional software packages); - search and research (independent research activity of students in the learning process); - the solution of educational tasks.

Topics of lectures
  • 1
Key reading
  • 1. Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высшая школа, 2002. 2 Трофимова Т.И. Курс физики. – М.: Высшая школа, 2003. 3 Савельев И.В. Курс физики, т. 1- 3. – М.: Наука, 1989. 4 Жаксылыкова А.А., Паюк В.А. Курс лекций по физике. Часть 1. – Усть-Каменогорск, ВКГТУ, 2009. 5 Чертов А.Г., Воробьев А.А. Задачник по физике.–М: Высшая школа,1981. 6 Волькенштейн В.С. Сборник задач по общему курсу физики. – М.: Наука, 2003. 7 Методические указания к лабораторным работам по физике. – Усть-Каменогорск: УКСДИ, 2002-2012. 8 Жаксылыкова А.А. Физика 1, 2. Учебно-методическое пособие к практическим занятиям и самостоятельной работе для студентов технических вузов.- Усть-Каменогорск: ВКГТУ, 2010. 9 Жаксылыкова А.А. Презентации лекций по Физике в Power Point. . – Усть-Каменогорск: УКСДИ, 2006-2012.
Further reading
  • 1. Стрелков С.П. Механика. - М.: Наука, 1975. 2. Матвеев А.Н. Молекулярная физика. – М.: Высшая школа, 1983. 3. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983. 4. Плотников А.Л. Лекции по физике. Учебное пособие / Изд-во ВКГТУ. – Усть-Каменогорск, 2010. – 176 с. 5. Чертов А.Г. Единицы физических величин. – М.: Высшая школа, 1977. 6. Трофимова Т.И., Павлова З.Г. Сборник задач по курсу физики с решениями. – М.: Высшая школа, 2003. 7. Фриганг Е.В. Руководство к решению задач по курсу общей физики. – М.: Высшая школа, 1978.