X-ray diffraction and fluorescence analysis

Aringozhina Zarina Erzhanovna

The instructor profile

Description: This course is devoted to diffraction research methods, the application of modern diffraction research methods to determine the phase composition and structure of substances, which form knowledge in the field of X-ray diffraction analysis of materials, crystallography and the general theory of diffraction, understanding the features of diffraction of various types of radiation used in the study of the structure of substances.

Amount of credits: 10

Пререквизиты:

  • Physics of Condensed State
  • Physics of Condensed State

Course Workload:

Types of classes hours
Lectures 30
Practical works 30
Laboratory works 30
SAWTG (Student Autonomous Work under Teacher Guidance) 60
SAW (Student autonomous work) 150
Course Paper
Form of final control Exam
Final assessment method Exam

Component: University component

Cycle: Base disciplines

Goal
  • Familiarization of students with the current state of experimental methods for studying the structure of the condensed state of matter.
Objective
  • To reveal the physical essence of the basic concepts, laws, theories of classical and modern methods of structural analysis in their internal interrelation and integrity, since for a future engineer it is important not so much to describe a wide range of physical phenomena as to learn the basics of structural analysis, the boundaries of their applicability, allowing them to be effectively used in specific situations.
Learning outcome: knowledge and understanding
  • fundamentals of X-ray physics, processes occurring in a solid body when it interacts with radiation, the main research methods used in X-ray diffraction analysis, be able to analyze standard diffraction patterns in relation to semiconductor and metallic materials.
Learning outcome: applying knowledge and understanding
  • independently study and consider the structural features of materials using X-ray diffraction analysis methods.
Learning outcome: formation of judgments
  • culture of thinking, the ability to generalize, analyze, perceive information, set goals and choose ways to achieve it; the ability to logically correctly, argumentatively and clearly build oral and written speech.
Learning outcome: communicative abilities
  • willingness to cooperate with colleagues, work in a team.
Learning outcome: learning skills or learning abilities
  • use of principles and methods of complex research, testing and diagnostics of materials, products and processes of their production, processing and modification, including standard and certification tests; use (under the guidance of) methods of modeling, evaluation, forecasting and optimization of technological processes and properties of nanomaterials, standardization and certification of materials and processes.
Teaching methods

When conducting training sessions, the following educational technologies are provided for:: - interactive lecture (application of the following active forms of learning: guided discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - building scenarios for the development of various situations based on the specified conditions; - information and communication (for example, classes in a computer class using professional application software packages); - search and research (independent research activity of students in the learning process); - solving educational tasks.

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating Colloquium 0-100
Individual tasks
Intermediate control 1
2  rating Colloquium 0-100
Individual tasks
Intermediate control 2
Total control Exam, Course Paper 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • X-ray spectra
  • The interaction of X-rays with matter
  • X-ray equipment
  • Fundamentals of structural crystallography (crystallographic projections, spatial lattice, inverse lattice, Bravais lattices, the most important formulas)
  • X-ray diffraction analysis methods (Laue method, single crystal rotation method, powder method)
  • X-ray diffractometers for the study of polycrystalline materials
  • Precision methods for determining the lattice periods of crystalline substances
  • X-ray analysis of textures in metals and alloys
  • X-ray phase analysis
  • The study of defects in the crystal structure and stresses using the X-ray diffraction method
  • The method of X-ray microscopy
  • The method of X-ray flaw detection
  • Метод рентгеноспектрального анализа
Key reading
  • 1. Уманский Я.С. Рентгенография металлов и полупроводников. – М.: Металлургия, 1969. - 496 с. 2. Уманский Я.С., Скаков Ю.А. Кристаллография, рентгенография и электронная микроскопия. – М.: Металлургия, 1982. - 368 с. 3. Пинес Б.Я. Лекции по структурному анализу – Харьков: Издательство харьковского университета, 1967. -476 с. 4. Горелик С.С., Скаков Ю.А., Расторгуев Л.Н. Рентгенографический и электронно-оптический анализ. - М.: МИСИС, 2002. – 360 с. 5. Рентгенография в физическом металловедении. Под редакцией Ю.А. Багаряцкого – М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1961. – 368 с. 6. Храмов А.С., Назипов Р.А. Рентгеноструктурный анализ поликристаллов. Ч.1. Казань, 2009 г., 64 с. 7. Храмов А.С., Назипов Р.А. Рентгеноструктурный анализ поликристаллов. Ч.V. Краткий терминологический словарь. Казань, 2009 г., 78 с. 8. Структурный анализ нанокристаллов: учебно-методический комплекс для подготовки бакалавров по тематическому направлению деятельности национальной нанотехнологической сети "Композитные наноматериалы".- СПб.:СПбГУ,2011.-163 с.. 9. Анищик В.М. Дифракционный анализ : Учебное пособие / В.М. Анищик, В.В. Понарядов, В.В. Углов. - Минск : Вышэйшая школа, 2011. - 216 с. 10. Фетисов Г.В. Синхротронное излучение : Методы исследования структуры вещества / Г.В. Фетисов ; под ред. Л.А. Асланова. - Москва : Физматлит, 2007. - 672 с.
Further reading
  • 1. 11. Русаков А. А. Рентгенография металлов. – М: Атомиздат, 1977. – 479 с. 12. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. Практическое руководство по рентгенографии, электронографии и электронной микроскопии металлов, полупроводников и диэлектриков –М.: Металлургия, 1970 – 368 с. 13. Барабаш О.М., Коваль Ю.Н. Структура и свойства металлов и сплавов. - Киев: Наукова думка, 1986. - 597 с. 14. Шаскольская М.П. Кристаллография – М.: Высшая школа, 1984. – 376 с. 15. Миркин Л.И.Справочник по рентгеноструктурному анализу поликристаллов –М.: Гос. изд-во физ.-мат. лит., 1961. – 863 с. 16. Недома И.Расшифровка рентгенограмм порошков - М.: Металлургия, 1975. - 423 с. 17. Техническое описания и инструкция по эксплуатации дифрактометра ДРОН-3. 18. Электронная программа АСТМ. 19. Блохин М.А. Основы рентгеноспектрального анализа. – М.: Физматгиз, 1959 – 463 с. 20. Приборы и методы физического металловедения. Под ред. Ф.Вейнберга. Выпуск 2. – М.: Мир, 1974. – 363 с. 2. IPR SMART http://www.iprbookshop.ru 3. ScienceDirect - http://www.sciencedirect.com. 4. EBSCO Discovery Service (EDS) - http://search.ebscohost.com