Computer Modeling of Radiation Damage Cascades

Eskermesov Didar Kayratovich

The instructor profile

Description: The study of the main methods of computer simulation of radiation damage cascades, mastering the practical skills of modeling in different environments. Introduction to mathematical modeling. Elementary mathematical models, obtaining math. models from the fundamental laws of nature. The use of numerical methods in the modeling of physical processes. Grid method. Finite element method. Obtaining models using variational principles. Hierarchical model.

Amount of credits: 4

Пререквизиты:

  • Computer Modeling of Physical Processes

Course Workload:

Types of classes hours
Lectures 15
Practical works 30
Laboratory works
SAWTG (Student Autonomous Work under Teacher Guidance) 15
SAW (Student autonomous work) 60
Form of final control Exam
Final assessment method Written exam

Component: Component by selection

Cycle: Base disciplines

Goal
  • to provide students with knowledge and experience in the design of analog audio signal processing devices based on modern methods of mathematical modeling implemented in circuit modeling systems based on personal computers.
Objective
  • The specifics of the behavior of structural and functional materials, in particular nanomaterials under the influence of ionizing radiation, are revealed, and the main directions of increasing the radiation resistance of materials, including nanomaterials, are considered
Learning outcome: knowledge and understanding
  • - basic methods of computer modeling of physical systems; - features of modeling of physical systems; - modeling radiation effects in crystals.
Learning outcome: applying knowledge and understanding
  • - analyze computer models of physical processes; - be able to apply in practice general and special purpose programs for modeling physical processes in condensed systems.
Learning outcome: formation of judgments
  • Formation of knowledge of the fundamental principles of physics, experimental, theoretical and computer methods of research, planning, organization and conduct of scientific and technical work.
Learning outcome: communicative abilities
  • willingness to cooperate with colleagues, to work in a team; willingness to use the basic laws of the discipline in professional activities, to apply the methods of theoretical and experimental research.
Learning outcome: learning skills or learning abilities
  • 1 methodology of scientific knowledge 2 apply scientific methods of cognition at the professional level 3 solutions to standard scientific and professional tasks
Teaching methods

.When giving lectures on this discipline, such a non-imitative method of active learning as a "Problem lecture"is used. Before studying the module, a problem is identified, which will be addressed by all the subsequent material of the module. Multimedia presentations are used during the lecture. When performing practical work, the interactive learning method "Case-method" is used: a task is given to undergraduates to prepare for the work; the purpose of the work and the progress of its implementation are discussed with the teacher; the goal is analyzed from different points of view, hypotheses are put forward, conclusions are drawn, and the results obtained are analyzed. The following innovative control methods are used: intermediate and final testing.

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating Colloquium 0-100
Individual tasks
Border control 1
2  rating Colloquium 0-100
Individual tasks
Border control 2
Total control Exam 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
The final assessment of the student's knowledge in the discipline is carried out according to a 100-point system. 90-100 70-89 50-69 90-100
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • 1
  • Применение метода Монте-Карло для численного интегрирования
  • Уравнения движения в методе МД
  • Связанные состояния одномерного уравнения Шредингера
  • Зонная и кластерная модели электронной структуры
  • Квантовый метод Монте-Карло для многоэлектронных систем
  • Моделирование междоузельных атомов и вакансий в твердых телах методами классической и первопринципной МД
  • Применение методов МД и МК для моделирования диффузии в твердых телах
  • Механизмы радиационного повреждения твердых тел при нейтронном облучении
  • Механизмы взаимодействия гамма-излучения с веществом
  • Процессы взаимодействия электронов с веществом: ионизационные потери энергии электронов, тормозное излучение, многократное рассеяние электронов, неупругие столкновения электронов с большой передачей энергии
  • Построение атомных моделей фуллеренов
  • Построение атомных моделей нанотрубок (НТ)
  • Моделирование механических свойств НТ методами МД и квантовой физики
  • Построение атомных моделей поверхности, межфазных границ и графена
Key reading
  • 1. Щеглова И. Ю., Богуславский А. А. Моделирование колебательных процессов (на примере физических за-дач). – Коломна, 2009. 2. Богуславский А.А., Щеглова И.Ю. Лабораторный практикум по курсу "Моделирование физических процес-сов": Учебно-методическое пособие для студентов физи-ко-математического факультета. – Коломна: КГПИ, 2002 г. – 88 стр. 3. Биккин Х.М. Колебания: Учеб. пособие. Екатерин-бург: Изд-во Урал. ун-та, 2001. 136 с. 4. Томилин А.К. Методы нелинейной теории колебаний. Учебно-методическое пособие. У-К, 1995.