Nuclear Physics and Elementary Particle Physics
Description: This course examines the general properties of atomic nuclei, modern models of the nucleus, the main characteristics of nuclear forces. The laws of the phenomenon of radioactivity, the theory of alpha and beta decay, nuclear and thermonuclear reactions. The basic properties and classification of elementary particle physics are also given, which help to expand the knowledge of students in this field.
Amount of credits: 6
Пререквизиты:
- Molecular physics and thermodynamic
- Physical Optics
Course Workload:
Types of classes | hours |
---|---|
Lectures | 30 |
Practical works | 30 |
Laboratory works | |
SAWTG (Student Autonomous Work under Teacher Guidance) | 30 |
SAW (Student autonomous work) | 90 |
Form of final control | Exam |
Final assessment method | Exam |
Component: University component
Cycle: Profiling disciplines
Goal
- The purpose of teaching the discipline is to introduce students to the basics of experimental and theoretical nuclear physics so that the student has a fairly complete understanding of the basic properties of atomic nuclei; radioactivity, nuclear reactions and experiments in low, medium and high energy physics; nucleon-nucleon interactions and properties of nuclear forces; models of atomic nuclei; interactions of nuclear radiation with matter; fundamental interactions in nature; classification of elementary particles; modern astrophysical concepts.
Objective
- 1. Formation of knowledge and ability to navigate in the physics of the atomic nucleus and particles, understanding the deep connection between the micro-and macrocosm; 2. The formation of skills of practical work with particle detectors, setting up experiments, processing and presenting the obtained data; 3. The ability to set tasks and perform elementary calculations of the passage of particles through matter, acceleration and detection of particles, in the physics of the atomic nucleus.
Learning outcome: knowledge and understanding
- the units of measurement adopted in nuclear physics, the basics of the interaction of radiation with matter, acceleration and detection of particles, have an idea of the quantum mechanical nature of the processes in nuclei, their decay, fission and interaction with other nuclei and particles, the main characteristics and models of nuclei, methods for studying nuclei, astrophysical aspects of the origin and prevalence of elements, the possibilities and achievements of nuclear physics in other fields;
Learning outcome: applying knowledge and understanding
- Be able to use the formulas of the special theory of relativity; - calculate the mass of the nuclei and the elementary kinematics of the reactions; - apply reference material to study the possibility of using the radioactive radiation of nuclei and particles from accelerators for applied and scientific purposes;
Learning outcome: formation of judgments
- 1. Understanding the depth and complexity of the laws of nature, the generality and interrelation of phenomena in the micro and macro worlds, including the Universe. 2. Willingness to work effectively independently as a team member on an interdisciplinary topic, to be a leader in the team. 3. Understanding the need for independent training and professional development throughout the entire period of professional activity.
Learning outcome: communicative abilities
- develop the communication skills needed to work in a team.
Learning outcome: learning skills or learning abilities
- 1. The ability to demonstrate professional knowledge in the field of particle detection and nanosecond electronics. 2. Readiness to apply the ideas and methods of modern nuclear physics in other areas of human activity.
Teaching methods
1. Lecture-seminar-credit system 2. Research methods 3. Information and communication technologies
Assessment of the student's knowledge
Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.
Period | Type of task | Total |
---|---|---|
1 rating | Colloquium | 0-100 |
Individual tasks | ||
Performing and protecting laboratory work | ||
Border control 1 | ||
2 rating | Border control 2 | 0-100 |
Colloquium | ||
Colloquium | ||
Performing and protecting laboratory work | ||
Total control | Exam | 0-100 |
The evaluating policy of learning outcomes by work type
Type of task | 90-100 | 70-89 | 50-69 | 0-49 |
---|---|---|---|---|
Excellent | Good | Satisfactory | Unsatisfactory |
Evaluation form
The student's final grade in the course is calculated on a 100 point grading scale, it includes:
- 40% of the examination result;
- 60% of current control result.
The final grade is calculated by the formula:
FG = 0,6 | MT1+MT2 | +0,4E |
2 |
Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;
E is a digital equivalent of the exam grade.
Final alphabetical grade and its equivalent in points:
The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:
Alphabetical grade | Numerical value | Points (%) | Traditional grade |
---|---|---|---|
A | 4.0 | 95-100 | Excellent |
A- | 3.67 | 90-94 | |
B+ | 3.33 | 85-89 | Good |
B | 3.0 | 80-84 | |
B- | 2.67 | 75-79 | |
C+ | 2.33 | 70-74 | |
C | 2.0 | 65-69 | Satisfactory |
C- | 1.67 | 60-64 | |
D+ | 1.33 | 55-59 | |
D | 1.0 | 50-54 | |
FX | 0.5 | 25-49 | Unsatisfactory |
F | 0 | 0-24 |
Topics of lectures
- The composition of atomic nuclei
- The binding energy of the nucleus
- The main characteristics of the core
- The spin-magnetic moment of the nucleus
- Nuclear forces
- Parity and kernel statistics
- A drip model of the core
- The shell model of the kernel
- Generalized Kernel Model
- Radioactivity
- α-nuclear decay
- β-nuclear decay
- γ-decay of nuclei
- Conservation laws in nuclear reactions
- Elementary particles
Key reading
- 1 Широков Ю.М., Юдин Н.П. Ядерная физика.-М.: «Наука»,1972 г. 283 с. 2 Сивухин Д.В. Общий курс физики, т.5. Атомная и ядерная физика: ч.2, учебное пособие. - М.: ВШ, 1986.-416 с. 3 Детлаф А.А.,Яворский Б.М. Курс физики. – М.: ВШ., 1989. – 608 с. 4 Сборник задач по общему курсу физики. V. Атомная физика. Физика ядра и элементарных частиц. Под ред. Сивухина Д.В..-М.: Наука, 1981г. 5 Иродов И.Е. Задачи по общей физике. М.: Наука, 1988 6 Кортнев А.В., Рублев Ю.В., Куценко А.Н. Практикум по физике, М.:ВШ,1965 7 Иродов И.Е. Атомная и ядерная физика. Сборник задач: Учебное пособие.- СПб: изд. «Лань»,2002. – 288 8 Сивухин Д.В. Атомная и ядерная физика, т.V .-М.: Физматлит.2006г. 439 с. 9 Иродов И.Е. Квантовая физика. Основные законы.- М.: ВШ,1988г. 10 Савельев И.В. Сб. вопросов и задач по общей физике. Учебное пособие.- М.: Наука. 1982. – 272с. 11 Пустовалов Г.Е. Атомная и ядерная физика. М.: МУ.1968.-311с. 12 Шпольский Э.В. Атомная физика: Учебное пособие в 2-х томах. – М.: Наука,1984, т.2-438с.
Further reading
- 13 Гольдин Л.Л., Новикова Г.И. Введение в квантовую физику. – М.: Наука, 1988.-328 с. 14 Мухин К.Н. Экспериментальная ядерная физика. Т.1,Физика атомного ядра.- М.: Энергоатомиздат, 1993 г.,616 с. 15 Мухин К.Н. Экспериментальная ядерная физика; т.2, Физика элементарных частиц.- М.: Энгергоатомиздат,1993 г, 293 с. 16 Савельев И.В. Курс общей физики. Книга 5. М.: Наука,1998.- 368с. 5 Корсунский М.И. Оптика. Строение атома. Атомное ядро. М.: Наука, 1967. 17 Физический практикум. Под ред. В.И.Ивероновой М.: Наука,1968. 18 Майсова Н.Н. Практикум по курсу общей физики. Росвузиздат, 1963. 19 Руководство к лабораторным занятиям по физике. Под ред. Л.Л.Гольдина. М.: Наука, 1973. 20 Ракобольская И.В. Ядерная физика, М.: Изд. МГУ,1971 г,293 с. 21 Сивухин К.Н. Введение в ядерную физику, - М.:Госатомиздат 1963г. 22 Айзенберг И.В., Грайнер В. Модели ядер. Коллективные и одночастичные явления. М.: Атомиздат,1975, 454 с. 23 Айзенберг И.В., Грайнер В. Механизмы возбуждения ядра. М.: Атомиздат,1976,487 с. 13 Атмачиди П.И., Гайнова Л.Е. и др. Физика. Методические указания к выполнению контрольных работ для студентов-заочников инженерно-технических специальностей. Семипалатинск, УОП СТИММП, 1996 24 Капитонов И.М. Введение в физику ядра и частиц – М.: УРСС, 2002г. 25 Взоров Н.Е. и др. Сборник задач по общей физике -М.: Наука,1968г. ч.5 26 Жумагулов А.Ж., Гайнова Л.Е. и др. Физика. Тесты. Атомная и ядерная физика. Семипалатинск, 1996 27 Батракова Л.М. и др. Программа вопросов с выборочными ответами для изучения курса физики. Ч.2. Алма-Ата,1979 28 Байсакалова А.Б. Методическая разработка по программированному контролю по общему курсу физики. Алма-Ата, 1987 29 Чертов А.Г.,Воробьев А.А.Задачник по физике –М.: ВШ, 1988, гл. 8 30 Джумагулова К.Н., Гайнова Л.Е. и др. Лабораторный практикум по ядерной физике – Курчатов,2001 г. 31 Нерсесов Э.А. Основные законы атомной и ядерной физики. - М.: ВШ.1988