Physics of Semiconductors

Aringozhina Zarina Erzhanovna

The instructor profile

Description: Studies theoretical bases of semiconductors and mastering of skills of research and design of devices with the set characteristics on the basis of semiconductors. The main task is to reveal the essence of the processes of current transfer in semiconductors, the theory of electrical conductivity, kinetic phenomena in semiconductors.

Amount of credits: 5

Пререквизиты:

  • Physical Principles of Mechanics

Course Workload:

Types of classes hours
Lectures 15
Practical works 15
Laboratory works 15
SAWTG (Student Autonomous Work under Teacher Guidance) 30
SAW (Student autonomous work) 75
Form of final control Exam
Final assessment method

Component: Component by selection

Cycle: Profiling disciplines

Goal
  • Formation of a scientific basis for students to consciously and purposefully use the physical properties of semiconductors to create devices and devices of micro and nanoelectronics.
Objective
  • - expanding the scientific horizons and erudition of students on the basis of studying the fundamental laws of semiconductor physics and mastering the ways of practical use of the properties of semiconductors; - developing an understanding of the relationship between the physical properties of semiconductors and the parameters of microelectronics products based on these materials; - practical mastery of the methods of theoretical description of the physical properties of semiconductors, mastery of the skills of setting up a physical experiment to study the basic properties and parameters of semiconductors; - knowledge of experimental methods for controlling the properties of semiconductors; - creating a basis for further study of the physics of semiconductor devices, including devices and devices of nanoelectronics, solid-state electronics and micro - and nanosystem technologies.
Learning outcome: knowledge and understanding
  • atomic structure and symmetry elements of the main semiconductors; - types of vibrations of atoms in crystals with a simple and complex primitive cell; - fundamentals of the band theory of crystalline solids, the principle of separation of solids into metals and dielectrics, the place of semiconductors in this classification; - methods for growing bulk crystals and epitaxial semiconductor structures; - methods for determining the main parameters of semiconductors; band gap, mobility and concentration of free carriers, lifetime of non-basic charge carriers; - basic kinetic phenomena in semiconductors; - interband absorption of light, absorption on phonons and on free charge carriers, photoconductivity; - fundamentals of technology for creating and physical principles of operation of semiconductor devices.
Learning outcome: applying knowledge and understanding
  • - determine the main types of crystal lattices, find the elements of symmetry of crystals, determine the vectors of the main translations and elementary cells, denote the crystallographic directions and planes; - find the inverse lattice, explain its physical meaning; to determine experimentally the type of charge carriers in a semiconductor by the sign of the thermopower, their mobility using the Hall effect; - explain the basic microscopic mechanisms of light absorption in straight-band and non-straight-band semiconductors in the language of band diagrams.
Learning outcome: formation of judgments
  • ability to navigate the current scientific literature on semiconductor physics; - ability to master the basic methods of studying the physical properties of semiconductors.
Learning outcome: communicative abilities
  • To deepen the students ' system of concepts and concepts in the field of semiconductors.
Learning outcome: learning skills or learning abilities
  • - basic concepts of condensed matter physics and semiconductor physics; - information about the basic properties of the most important semiconductors (silicon, germanium, gallium arsenide and gallium nitride); - information about the design and principles of effective devices on semiconductor heterostructures.
Teaching methods

When conducting training sessions, the following educational technologies are provided: - interactive lecture (using the following active forms of learning: guided discussion or conversation; moderation; demonstration of slides or educational films; brainstorming; motivational speech); - building scenarios for various situations based on the specified conditions; - information and communication technology (for example, classes in a computer class using professional software packages); - search and research (independent research activity of students in the learning process); - the solution of educational tasks.

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating Colloquium 0-100
Individual tasks
Performing and protecting laboratory work
Border control 1
2  rating Border control 2 0-100
Colloquium
Individual tasks
Performing and protecting laboratory work
Total control Exam 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • The zone structure of solids
  • The Schrodinger equation for a crystal
  • Solution of the Schrodinger equation in the weak coupling approximation
  • Statistics of electrons in semiconductors
  • Fermi-Dirac distribution
  • The concentration of electrons at impurity levels
  • Examples of solving the electroneutrality equation
  • Temperature dependence of the charge carrier concentration, determination of the activation energy
  • Physical properties of the semiconductor surface
  • Surface states and surface potential
  • The field effect
  • Contact phenomena in semiconductors
  • Electron and semiconductor and metal output work
  • Contact of n - and p - type semiconductors of conductivity
  • Atomic structure and features of the spectrum of disordered (amorphous) semiconductors
Key reading
  • 1. Ансельм, А.И. Введение в теорию полупроводников: учеб. пособие / А.И. Ансельм. // СПб.: Лань. – 2008. – 470 с. http://e.lanbook.com/books/element.php?pl1_id=693 2. Зегря, Г.Г. Основы физики полупроводников/ Г.Г. Зегря, В.И. Перель.// Издательство: Физматлит. – 2009. – 336с. http://e.lanbook.com/books/element.php?pl1_id=2371 3. Шалимова, К.В. Физика полупроводников/ К.В. Шалимова.// Издательство: Лань. – 2010. – 384с. http://e.lanbook.com/books/element.php?pl1_id=648 4. Епифанов, Г.И. Физика твердого тела: учеб. пособие. – СПб.: Лань. – 2010. – 288 с. 5. Старосельский, В. И. Физика полупроводниковых приборов микроэлектроники: учеб. пособие / В. И. Старосельский. – М.: Юрайт, 2011. – 463 с. 6. Парфенов, В.В. Физика полупроводников: метод пособие к практикуму/ В.В. Парфенов, Р.Х. Закиров.// Издательство: Казанский гос.унив. – 2009. – 60с. 7. Ланкин, С.В. Введение в лабораторный физический практикум/ С.В. ланкин, Е.П. Яковлева.// Издательство: БГПУ. – 2015. – 86с.
Further reading
  • 1. Фетисов, И.Н. Проверка формулы Шокли для р-п-перехода и определения ширины запрещенной зоны германия/ И.Н. Фетисов. //Издательство: МГТУ им. Н.Э. Баумана. – 2007. – 27с. http://e.lanbook.com/books/element.php?pl1_id=52463 2. Горелик, С.С. Материаловедение полупроводников и диэлектриков/ С.С. Горелик, М.Я. Дашевский.// Издательство: МИСИС. – 2003. – 480с. http://e.lanbook.com/books/element.php?pl1_id=1816с 3. Ансельм, А.И. Введение в теорию полупроводников: учеб. пособие / А.И. Ансельм. – СПб.: Лань. – 2008. – 470 с. http://e.lanbook.com/books/element.php?pl1_id=693 4. Ашкрофт, Н. Физика твердого тела. Т. I, II / Н. Ашкрофт, Н. Мерлин. – М.: Наука. – 1979. – 357с. 5. Бонч-Бруевич, В.Л. Сборник задач по физике полупроводников / В.Л. Бонч-Бруевич. – М.: Наука. – 1968. – 112 с. 6. Бутиков, Е.И. Оптика. Е.И / Бутиков. – С. Петербург: Невский Диалект. – 2003. – 480 с. 7. Дитчберн, Р. Физическая оптика / Р. Дитчберн. – М.: Наука. – 1965. – 632 с. 8. Ландсберг, Г.С. Оптика / Г.С. Ландсберг. – М.: Наука. – 2009. – 926 с. 9. Матвеев, А.Н. Оптика / А.Н. Матвеев. – М.: Высшая школа. – 2009. – 351 с.