Theoretical Principles of Machines Development

Eserkegenova Bekzat Zhambylkyzy

The instructor profile

Description: The discipline provides knowledge for all engineering specialties about the technical and, in part, the creative side of the processes of solving engineering problems when creating machines, about the methods and tools of these processes, equips the technical specialist with knowledge, skills and means for professional activities to create new technology based on effective technical solutions. and serves as the basis for major engineering disciplines.

Amount of credits: 5

Пререквизиты:

  • Cutting and Cutting tool

Course Workload:

Types of classes hours
Lectures 30
Practical works 15
Laboratory works
SAWTG (Student Autonomous Work under Teacher Guidance) 30
SAW (Student autonomous work) 75
Form of final control Exam
Final assessment method written exam

Component: Component by selection

Cycle: Profiling disciplines

Goal
  • formation of students with a complex of deep systemic professional knowledge, skills and abilities for carrying out engineering activities, solving technical problems, independently searching for technical solutions in the development, creation and improvement of machinery and equipment, the development of engineering thinking, ensuring practical activities in the specialty.
Objective
  • to master theoretical knowledge in the field of technical tools for creating machines, to form a holistic view of this field of knowledge and to achieve their understanding; to acquire and develop the skills and abilities of practical application of acquired knowledge and solving applied technical and design problems in the field of machine creation using technical tools for practical engineering activities in the specialty; to form systematic professional knowledge, skills and abilities necessary both in the field of machine creation and beyond for independent search for solutions development and improvement of engineering thinking and practical activities in the specialty.
Learning outcome: knowledge and understanding
  • to learn, recall, reproduce and demonstrate an understanding of the information of the course of the technical foundations of machine creation, to be able to receive it, generalize, transform, interpret, paraphrase and explain with examples
Learning outcome: applying knowledge and understanding
  • be able to understand the essence of applied problems and tasks of creating machines and be able to explore and solve them, practically applying the acquired knowledge, skills and abilities for various cases, in familiar and new fields and situations to carry out practical engineering activities in the specialty
Learning outcome: formation of judgments
  • be able to explain processes, phenomena, general principles and logical relationships in the field of machine creation, break down and connect information, logically build it, comprehend, generalize, compare, evaluate, criticize, verify, explain, establish connections, make judgments, draw and defend conclusions and conclusions, see the main thing
Learning outcome: communicative abilities
  • be able to communicate clearly and consistently information, ideas, problems and solutions on the creation of machines and their application in professional activities to an audience consisting of both specialists and non-specialists in a monologue and dialogue mode
Learning outcome: learning skills or learning abilities
  • have the skills necessary to apply knowledge and skills in the field of machine creation and carry out further training in the specialty with a high degree of independence.
Teaching methods

involving students in knowledge search and management; - independent decision of various tasks; - problem - and project-oriented learning; - teaching and research activities; - communication technologies (discussion, brainstorming, educational debates, etc.); - case study (analysis of the situation); - information and communication technologies.

Assessment of the student's knowledge

Teacher oversees various tasks related to ongoing assessment and determines students' current performance twice during each academic period. Ratings 1 and 2 are formulated based on the outcomes of this ongoing assessment. The student's learning achievements are assessed using a 100-point scale, and the final grades P1 and P2 are calculated as the average of their ongoing performance evaluations. The teacher evaluates the student's work throughout the academic period in alignment with the assignment submission schedule for the discipline. The assessment system may incorporate a mix of written and oral, group and individual formats.

Period Type of task Total
1  rating An individual assignment is given to each student for the rating. 0-100
2  rating An individual assignment is given to each student for the rating. 0-100
Total control Exam 0-100
The evaluating policy of learning outcomes by work type
Type of task 90-100 70-89 50-69 0-49
Excellent Good Satisfactory Unsatisfactory
In accordance with Section 8, "The policy of evaluating students' academic achievements" AP NJC "VKTU" 029-III-2022 Academic policy of NJC "VKTU named after D. Serikbayev" Possesses theoretical knowledge, knows the terminology and key concepts of the discipline, is able to present lecture material clearly and logically, understands technological processes and their components, analyzes the full scope of acquired knowledge for use in individual assignments, and demonstrates logical and well-reasoned solutions when performing practical work. Possesses theoretical knowledge, knows the terminology and key concepts of the discipline, is able to present lecture material clearly and logically, understands technological processes and their components, but requires the instructor’s assistance to analyze the overall volume of acquired knowledge for use in individual assignments, and demonstrates logical and well-reasoned solutions when performing practical work at the level of 70–89%. Possesses more than 50% of the theoretical knowledge, knows the terminology and key concepts of the discipline, is able to present lecture material clearly and logically, understands technological processes and their main components, but can apply the acquired knowledge to complete individual assignments only with the instructor’s assistance, and demonstrates logical and well-reasoned solutions when performing practical work at a level of 50–69%. Possesses theoretical knowledge, knows the terminology and key concepts of the discipline, is able to present lecture material clearly and logically, understands technological processes and their components, analyzes the full scope of acquired knowledge for use in individual assignments, and demonstrates logical and well-reasoned solutions when performing practical work.
Evaluation form

The student's final grade in the course is calculated on a 100 point grading scale, it includes:

  • 40% of the examination result;
  • 60% of current control result.

The final grade is calculated by the formula:

FG = 0,6 MT1+MT2 +0,4E
2

 

Where Midterm 1, Midterm 2are digital equivalents of the grades of Midterm 1 and 2;

E is a digital equivalent of the exam grade.

Final alphabetical grade and its equivalent in points:

The letter grading system for students' academic achievements, corresponding to the numerical equivalent on a four-point scale:

Alphabetical grade Numerical value Points (%) Traditional grade
A 4.0 95-100 Excellent
A- 3.67 90-94
B+ 3.33 85-89 Good
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Satisfactory
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Unsatisfactory
F 0 0-24
Topics of lectures
  • Topic 1
Key reading
  • 1. Алгоритмы оптимизации проектных решений. Под ред. А.П. Половинкина. М., «Энергия», 2016. 2. Бакатин Ю.П. Основы инженерного творчества. (Практика поиска и защиты новых инженерных решений): Учебное пособие М.: ООО «Техполиграфцентр», 2015. - 113 с. 3. Белокрылов В.Г. Стандартизация и унификация строительных и дорожных машин. Учебное пособие. / В.Г. Белокрылов, Омск, СибАДИ, 2018. 4. Богомолов А.А. Технические основы создания машин: Конспект лекций. – Белгород, изд. БТИСМ, 2012. – 123 с. 5. Болдин А.П., Максимов В.А. Основы научных исследований и УНИРС: Учебное пособие. - МАДИ. – М., 2012. - 76 с. 6. Вертгеймер М. Продуктивное мышление. – М.: Прогресс, 2017. 7. Воинов Б.С. Принципы поискового конструирования: Учебн. Пособие. Горький: ГГУ, 2018. 8. Гасанов А.И, Кокин С.М. Методы инженерного творчества. Учебное пособие для студентов технических специальностей. Части 1-4. – М.: МИИТ, 2014. 9. Гжиров Р.И. Краткий справочник конструктора: Справочник – Л.: Машиностроение, Ленинград. отд-ние, 2013. – 464 с. 10. Гурьянов Г.А., Дудкин М.В., Макенов А.А. Основы творческой деятельности при конструировании и создании машин и оборудования. Учебное пособие. - ВКГТУ. – Усть-Каменогорск. – 2013. – 206 с. 11. Гурьянов Г.А., Дудкин М.В., Макенов А.А. Развитие творческих способностей студентов в процессе обучения в ВУЗе. - LAP Lambert Academic Publishing GmbH & Co. KG, Germany, 2011. - 163 с. 12. Гурьянов Г.А., Дудкин М.В., Макенов А.А., Арпабеков М.И. Основы конструирования и творчества при создании машин и оборудования: Учебник. – Усть-Каменогорск: ВКГТУ. – 2017. – 346 с. 13. Гурьянов Г.А., Дудкин М.В., Макенов А.А. Изобретательство как решение педагогической задачи развития творческих способностей студентов технического вуза. - Усть-Каменогорск: ВКГТУ, 2018. – 140 с. 14. Джонс Дж.К. Инженерное и художественное проектирование / Пер. с англ. – М.: Мир, 2016. 15. Джонс Дж.К. Методы проектирования / Пер. с англ. – М.: Мир, 2016. 16. Дидрих Я. Проектирование и конструирование. Системный подход. М.: Мир, 2011. 17. Заблонский К.И. Основы проектирования машин. Киев: Вища школа, 2011. – 311 с. 18. Завьялов А.Б., Борисовский В.В., Госиков А.З., Сетуха В.В., Голобев С.С. Закономерности развития технических систем. Учебно-методическое пособие (Главный научно-методический центр по повышению квалификации и подготовке кадров, ИПК). - Красногорск, 2011. - 44 с. 19. Зиновкина М.М. Инженерное мышление (Теория и инновационные педагогические технологии). Московский государственный индустриальный ун-т. - М., 2016. 20. Инженерная психология. Теория, методология, практическое применение. – М.: Наука, 2017. 21. Инженеру об изобретении / Под ред. Е.Л. Макеева, М.: Атомиздат, 2014. 22. Кабашев Р.А., Гельцер А.К. Технические основы конструирования строительных машин. – Алматы, 2014. – 197 с., ил. 23. Карпов Л.И., Аристов А.И. Оптимальные задачи стандартизации в машиностроении. ВНИИИ. – М.: 2012. – 82 с. 24. Кириллов Ф.Ф., Добжинский Д.П. Технические основы создания машин: Учебное пособие. – Томск: Изд-во Том. ун-та, 2011. – 189 с. 25. Колосов В.Г. Основы инноватики: Учебное пособие. – СПб. - 2019. 26. Крик Э. Введение в инженерное дело. – М.: Энергия, 2013. 27. Мелещенко Ю.С. Техника и закономерности ее развития. Л.: Лениздат, 2010. 28. Новиков А.Н. Синтез новых технических решений дорожно- строительных машин и оборудования.- М.: МАДИ, 2011. - 32 с. 29. Орлов П.И. Основы конструирования: Справочно-методическое пособие в 2-х кн. Под ред. П.Н. Учаева. – Изд. 3-е, испр. – М.: Машиностроение, 2018. 30. Основы научных исследований: Учеб. для техн. вузов / В.И. Крутов, И.М. Грушко, В.В. Попов и др.; Под ред. В.И. Крутова, В.В. Попова. - М.: Высшая школа, 2015. - 400 с. 31. Патентоведение: Учебник для вузов. Под ред. Рясенцева В.А. 3-е изд. М.: Машиностроение, 2014. – 352 с. 32. Половинкин А.И. Методы инженерного творчества. – Волгоград: ВПИ, 2014. 33. Половинкин А.И. Основы инженерного творчества: Учеб. пособие для студентов втузов. – М.: Машиностроение, 2016.