Математический анализ

Мухамедова Раушан Оразгалиевна

Портфолио преподавателя

Описание: Рассматриваемые в этих разделах современные методы математического анализа составляют основу для дальнейшего изучения цикла математических дисциплин, а также позволяют моделировать и исследовать простейшие прикладные задачи в различных отраслях прикладных наук. Дисциплина содержит разделы: введение в математический анализ; дифференциальное исчисление функции одной и нескольких переменных и их приложения. Числовые и функциональные ряды.

Количество кредитов: 8

Пререквизиты:

  • Математика. Школьный курс

Трудоемкость дисциплины:

Виды работ часы
Лекции 30
Практические работы 75
Лабораторные работы
СРОП 30
СРО 105
Форма итогового контроля экзамен
Форма проведения итогового контроля Письменный экзамен

Компонент: Вузовский компонент

Цикл: Базовые дисциплины

Цель
  • Цель изучения дисциплины: Курс математического анализа является фундаментом математического образования специалиста по математическому моделированию и в рамках этого курса проводится ориентирование на приложение математических методов в профессиональной деятельности.
Задача
  • Задачи изучения дисциплины: - овладение основными положениями классических разделов математического анализа, базовыми идеями и методами математики, системой основных математических структур и культурой математического мышления, логической и алгоритмической культурой, понимание общей структуры математического знания, взаимосвязи между различными математическими дисциплинами, умение реализовывать основные методы математических рассуждений на основе общих методов научного исследования и опыта решения учебных и научных проблем
Результат обучения: знание и понимание
  • Знание и понимание : знание и понимание основных математических определений, теорем и др. теоретических сведений курса «Математический анализ », а также знание типов задач решаемых теми или иными математическими методами;
Результат обучения: применение знаний и пониманий
  • Применение знаний и умений: применение знаний и умений в формулировании прикладных практических задач математическими методами, а также применение известных методов для решения сформулированных задач;
Результат обучения: формирование суждений
  • Формирование суждений: умение на основе имеющихся знаний дисциплины " Математический анализ" делать выводы о возможных методах анализа и решения практических задач в специальной области;
Результат обучения: коммуникативные способности
  • Коммуникативные способности: умение работать в коллективе для эффективного решения поставленных практических задач на основе знаний математических методов;
Результат обучения: навыки обучения или способности к учебе
  • Навыки обучения или способности к учебе : способность самостоятельного или на основе учебных образовательных программ повышения квалификации в области математических знаний в целях соответствия современным требованиям специальности.
Методы преподавания

интерактивные технологии обучения;

компьютерные технологии обучения;

самостоятельная исследовательская работа студентов во время учебного процесса.

Оценка знаний обучающегося

Преподаватель проводит все виды работ текущего контроля и выводит соответствующую оценку текущей успеваемости обучающихся два раза в академический период. По результатам текущего контроля формируется рейтинг 1 и 2. Учебные достижения обучающегося оцениваются по 100-балльной шкале, итоговая оценка Р1 и Р2 выводится как средняя арифметическая из оценок текущей успеваемости. Оценка работы обучающегося в академическом периоде осуществляется преподавателем в соответствии с графиком сдачи заданий по дисциплине. Система контроля может сочетать письменные и устные, групповые и индивидуальные формы.

Период Вид задания Итого
1  рейтинг ИДЗ 5.1 0-100
ИДЗ 5.2
ИДЗ 6.1-6.3, 6.4 (3)
ИДЗ 10.1-10.2
Контрольная работа 1
2  рейтинг ИДЗ 8.1--9.1 0-100
ИДЗ 9.2
ИДЗ 12.1-12.2
Контрольная работа 2
Итоговый контроль экзамен 0-100
Политика оценивания результатов обучения по видам работ
Вид задания 90-100 70-89 50-69 0-49
Отлично Хорошо Удовлетворительно Неудовлетворительно
Собеседование по контрольным вопросам (коллоквиум) демонстрирует системные теоретические знания, владеет терминологией, логично и последовательно объясняет сущность явлений и процессов, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью и способность быстро реагировать на уточняющие вопросы демонстрирует прочные теоретические знания, владеет терминологией, логично и последовательно объясняет сущность, явлений и процессов, делает аргументированные выводы и обобщения, приводит примеры, показывает свободное владение монологической речью, но при этом делает несущественные ошибки, которые исправляет самостоятельно или при незначительной коррекции преподавателем демонстрирует неглубокие теоретические знания, проявляет слабо сформированные навыки анализа явлений и процессов, недостаточное умение делать аргументированные выводы и приводить примеры, показывает недостаточно свободное владение монологической речью, терминологией, логичностью и последовательностью изложения, делает ошибки которые может исправить только при коррекции преподавателем. демонстрирует незнание теоретических основ предмета, несформированные навыки анализа явлений и процессов, не умеет делать аргументированные выводы и приводить примеры, показывает слабое владение монологической речью, не владеет терминологией, проявляет отсутствие логичности и последовательности изложения, делает ошибки, которые не может исправить даже при коррекции преподавателем, отказывается отвечать на занятии
ИДЗ (индивидуальное домашнее задние) или письменная работа/экзамена выполнил практическую работу в полном объеме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ ошибок. При ответе на вопросы правильно понимает сущность вопроса, дает точное определение и истолкование основных понятий; сопровождает ответ новыми примерами, умеет применить знания в новой ситуации; может установить связь между изучаемым и ранее изученным материалом, а также с материалом, усвоенным при изучении других дисциплин. выполнил требования к оценке «5», но допущены 2-3 недочета. Ответ обучающегося на вопросы удовлетворяет основным требованиям к ответу на 5, но дан без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении других дисциплин; допущены одна ошибка или не более двух недочетов, обучающийся может их исправить самостоятельно или с небольшой помощью преподавателя. выполнил работу не полностью, но не менее 50% объема практической работы, что позволяет получить правильные результаты и выводы; в ходе проведения работы были допущены ошибки. При ответе на вопросы обучающийся правильно понимает сущность вопроса, но в ответе имеются отдельные проблемы в усвоении вопросов курса, не препятствующие дальнейшему усвоению программного материала; допущено не более одной грубой ошибки и двух недочетов. выполнил работу не полностью или объем выполненной части работ не позволяет сделать правильных выводов. При ответе на вопросы демонстрирует не владение основными знаниями и умениями в соответствии с требованиями программы; допущены больше ошибок и недочетов, чем необходимо для оценки 3 или не может ответить ни на один из поставленных вопросов.
Форма оценки

Итоговая оценка знаний обучающего по дисциплине осуществляется по 100 балльной системе и включает:

  • 40% результата, полученного на экзамене;
  • 60% результатов текущей успеваемости.

Формула подсчета итоговой оценки:

И= 0,6 Р12 +0,4Э
2

 

где, Р1, Р2 – цифровые эквиваленты оценок первого, второго рейтингов соответственно; Э – цифровой эквивалент оценки на экзамене.

Итоговая буквенная оценка и ее цифровой эквивалент в баллах:

Буквенная система оценки учебных достижений обучающихся, соответствующая цифровому эквиваленту по четырехбалльной системе:

Оценка по буквенной системе Цифровой эквивалент Баллы (%-ное содержание) Оценка по традиционной системе
A 4.0 95-100 Отлично
A- 3.67 90-94
B+ 3.33 85-89 Хорошо
B 3.0 80-84
B- 2.67 75-79
C+ 2.33 70-74
C 2.0 65-69 Удовлетворительно
C- 1.67 60-64
D+ 1.33 55-59
D 1.0 50-54
FX 0.5 25-49 Неудовлетворительно
F 0 0-24
Темы лекционных занятий
  • Функция, её области определения и значений
  • Последовательность и её предел
  • Предел функции в точке
  • Непрерывность функции в точке
  • Понятие производной
  • Производные и дифференциалы высших порядков
  • Функция нескольких переменных
  • Частные производные и дифференциалы высших порядков
  • Неопределенный интеграл
  • Определенный интеграл
  • Вычисление площади плоской фигуры в декартовой и в полярной системе координат
  • Несобственные интегралы
  • Теория рядов
  • Знакочередующиеся числовые ряды
  • Функциональные последовательности и функциональные ряды
Основная литература
  • Берман Г.Н. Сборник задач по курсу математического анализа. – СПб.: Лань, 2018.
  • Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. – М.: Дрофа, 2016.
  • Сборник задач и упражнений по математическому анализу : учебное пособие для вузов, Б. П. Демидович, Москва: АСТ, 2014.
  • Кудрявцев Л.Д. и др. Сборник задач по математическому анализу. – М. : Физматлит, 2018. – 496 с.
  • Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. – М.: Интеграл - Пресс, 2015, Т.1.
  • Фихтенгольц Г.М. Основы математического анализа.М.:Наука, 2019г.
Дополнительная литература
  • Демидович Б.П. Краткий курс высшей математики. – М.: Астрель-АСТ, 2019.
  • Китапбаев М.К., Сидоренко В.Н., Чи-Дун-Чи Ю.В. Высшая математика в вопросах и задачах. Дифференциальное и интегральное исчисление.- У-ка, ВКГТУ, 2002.
  • Кузнецов Л.А. Сборник задач по высшей математике (типовые расчеты). – СПб.: Лань, 2015.
  • Рябушко А.П., Бархатов В. В и др. Индивидуальные задания по высшей математике.- Алматы: Образование и наука, 2013, Ч 1.